Journal of Ophthalmology / 2018 / Article / Fig 2

Research Article

Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy

Figure 2

Overall architecture of Visual Geometry Group-16 model. Visual Geometry Group-16 (VGG-16) comprises five blocks and three fully connected layers. Each block includes convolutional layers followed by a max-pooling layer. Flattening of the output matrix after block 5 resulted in two fully connected layers for binary classification. The deep convolutional neural network used ImageNet parameters; the weights of blocks 1–4 were fixed, whereas the weights of block 5 and the fully connected layers were adjusted.

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.