Table of Contents Author Guidelines Submit a Manuscript
Journal of Pregnancy
Volume 2013, Article ID 320413, 11 pages
http://dx.doi.org/10.1155/2013/320413
Review Article

The Heart-Placenta Axis in the First Month of Pregnancy: Induction and Prevention of Cardiovascular Birth Defects

USF Children’s Research Institute, CRI #2007, Department of Pediatrics, 140-7th Avenue South, St. Petersburg, FL 33701, USA

Received 8 November 2012; Revised 4 March 2013; Accepted 13 March 2013

Academic Editor: Riitta Luoto

Copyright © 2013 Kersti K. Linask. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Bailey and R. J. Sokol, “Pregnancy and alcohol use: evidence and recommendations for prenatal care,” Clinical Obstetrics and Gynecology, vol. 51, no. 2, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. J. Bruyere Jr. and C. E. Stith, “Strain-dependent effect of ethanol on ventricular septal defect frequency in White Leghorn chick embryos,” Teratology, vol. 48, no. 4, pp. 299–303, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Smith, “The avian embryo in fetal alcohol research,” Methods in Molecular Biology, vol. 447, pp. 75–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Chen, M. Han, S. M. Manisastry et al., “Molecular effects of lithium exposure during mouse and chick gastrulation and subsequent valve dysmorphogenesis,” Birth Defects Research A, vol. 82, no. 7, pp. 508–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Serrano, M. Han, P. Brinez, and K. K. Linask, “Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate,” American Journal of Obstetrics and Gynecology, vol. 203, no. 1, pp. 75.e7–75.e15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. T. Maurano, R. Humbert, E. Rynes et al., “Systematic localization of common disease-associated variation in regulatory DNA,” Science, vol. 337, pp. 1190–1195, 2012. View at Google Scholar
  7. D. J. P. Barker, “The origins of the developmental origins theory,” Journal of Internal Medicine, vol. 261, no. 5, pp. 412–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Barker, “Human growth and cardiovascular disease,” Nestle Nutrition Workshop Series, vol. 61, pp. 21–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Barker, R. L. Bergmann, and P. L. Ogra, “Concluding remarks. The window of opportunity: pre-pregnancy to 24 months of age,” Nestle Nutrition Workshop Series, vol. 61, pp. 255–260, 2008. View at Google Scholar
  10. R. H. Adams, A. Porras, G. Alonso et al., “Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development,” Molecular Cell, vol. 6, no. 1, pp. 109–116, 2000. View at Google Scholar · View at Scopus
  11. Y. Barak, M. C. Nelson, E. S. Ong et al., “PPARγ is required for placental, cardiac, and adipose tissue development,” Molecular Cell, vol. 4, no. 4, pp. 585–595, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Cross and L. Mickelson, “Nutritional influences on implantation and placental development,” Nutrition Reviews, vol. 64, no. 5, pp. S12–S18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Hemberger and J. C. Cross, “Genes governing placental development,” Trends in Endocrinology and Metabolism, vol. 12, no. 4, pp. 162–168, 2001. View at Google Scholar · View at Scopus
  14. J. Clark, K. E. Anderson, V. Juvin et al., “Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry,” Nature Methods, vol. 8, no. 3, pp. 267–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. J. Monkley, S. J. Delaney, D. J. Pennisi, J. H. Christiansen, and B. J. Wainwright, “Targeted disruption of the Wnt2 gene results in placentation defects,” Development, vol. 122, no. 11, pp. 3343–3353, 1996. View at Google Scholar · View at Scopus
  16. S. Peng, J. Li, C. Miao et al., “Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation,” Reproduction, vol. 135, no. 3, pp. 367–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Han, A. L. Neves, M. Serrano et al., “Effects of alcohol, lithium, and homocysteine on nonmuscle myosin-II in the mouse placenta and human trophoblasts,” American Journal of Obstetrics and Gynecology, vol. 207, no. 2, pp. 140.e7–140.e19, 2012. View at Google Scholar
  18. M. Han, M. C. Serrano, R. Lastra-Vicente et al., “Folate rescues lithium-, homocysteine- and Wnt3A-induced vertebrate cardiac anomalies,” Disease Models and Mechanisms, vol. 2, no. 9-10, pp. 467–478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. K. Linask and J. Huhta, “Folate protection from congenital heart defects linked with canonical Wnt signaling and epigenetics,” Current Opinion in Pediatrics, vol. 22, no. 5, pp. 561–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Serrano, M. Han, J. C. L. Huhta, R. Lastra, B. Garita, and K. K. Linask, “Folate suppresses Wnt/β-catenin inhibition of cardiogenesis to protect against induction of congenital heart defects,” in Proceedings of the American Heart Association Meeting, New Orleans, La, USA, 2008.
  21. M. C. Serrano, K. K. Linask, G. Acharya, J. Chen, M. Han, and J. C. Huhta, “One-time lithium dose in early gestation causes placental and cardiac dysfunction,” American Journal of Obstetrics & Gynecology, vol. 195, no. 6, p. S210, 2007. View at Google Scholar
  22. G. Acharya, T. Erkinaro, K. Mäkikallio, T. Lappalainen, and J. Rasanen, “Relationships among Doppler-derived umbilical artery absolute velocities, cardiac function, and placental volume blood flow and resistance in fetal sheep,” American Journal of Physiology, vol. 286, no. 4, pp. H1266–H1272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Acharya, T. Wilsgaard, G. K. R. Berntsen, J. M. Maltau, and T. Kiserud, “Reference ranges for serial measurements of blood velocity and pulsatility index at the intra-abdominal portion, and fetal and placental ends of the umbilical artery,” Ultrasound in Obstetrics and Gynecology, vol. 26, no. 2, pp. 162–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Manisastry, M. Han, and K. K. Linask, “Early temporal-specific responses and differential sensitivity to lithium and Wnt-3A exposure during heart development,” Developmental Dynamics, vol. 235, no. 8, pp. 2160–2174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. S. Walker, C. S. Fisher, A. Sherman, B. Wybrecht, and K. Kyndely, “Fetal alcohol spectrum disorders prevention: an exploratory study of women's use of, attitudes toward, and knowledge about alcohol,” Journal of the American Academy of Nurse Practitioners, vol. 17, no. 5, pp. 187–193, 2005. View at Google Scholar · View at Scopus
  26. W. Rozmus-Warcholinska, A. Wloch, G. Acharya et al., “Reference values for variables of fetal cardiocirculatory dynamics at 11–14 weeks of gestation,” Ultrasound in Obstetrics and Gynecology, vol. 35, no. 5, pp. 540–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Kaukola, J. Räsänen, R. Herva, D. D. Patel, and M. Hallman, “Suboptimal neurodevelopment in very preterm infants is related to fetal cardiovascular compromise in placental insufficiency,” American Journal of Obstetrics and Gynecology, vol. 193, no. 2, pp. 414–420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Miller, T. Riehle-Colarusso, C. J. Alverson, J. L. Frías, and A. Correa, “Congenital heart defects and major structural noncardiac anomalies, Atlanta, Georgia, 1968 to 2005,” Journal of Pediatrics, vol. 159, no. 1, pp. 70–78.e2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Han, A. L. Neves, M. Serrano et al., “Comparison of effects of alcohol, lithium, and elevated homocysteine exposure on nonmuscle myosin IIB expression in the mouse placenta and human trophoblasts,” American Journal of Obstetrics & Gynecology, vol. 207, no. 2, pp. 140.e7–140.e19.
  30. S. Giles, P. Boehm, C. Brogan, and J. Bannigan, “The effects of ethanol on CNS development in the chick embryo,” Reproductive Toxicology, vol. 25, no. 2, pp. 224–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. K. Linask, “Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function,” Birth Defects Research C, vol. 69, no. 1, pp. 14–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Goldmuntz, “The epidemiology and genetics of congenital heart disease,” Clinics in Perinatology, vol. 28, no. 1, pp. 1–10, 2001. View at Google Scholar · View at Scopus
  33. A. K. Nath, M. Krauthammer, P. Li et al., “Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects,” PLoS ONE, vol. 4, no. 1, Article ID e4221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Bovill, S. Westaby, S. Reji, R. Sayeed, A. Crisp, and T. Shaw, “Induction by left ventricular overload and left ventricular failure of the human Jumonji gene (JARID2) encoding a protein that regulates transcription and reexpression of a protective fetal program,” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 3, pp. 709–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Long, P. J. Lupo, E. Goldmuntz, and L. E. Mitchell, “Evaluation of heterogeneity in the association between congenital heart defects and variants of folate metabolism genes: conotruncal and left-sided cardiac defects,” Birth Defects Research A, vol. 91, pp. 879–884, 2011. View at Google Scholar
  36. E. Goldmuntz, S. Woyciechowski, D. Renstrom, P. J. Lupo, and L. E. Mitchell, “Variants of folate metabolism genes and the risk of conotruncal cardiac defects,” Circulation, vol. 1, no. 2, pp. 126–132, 2008. View at Google Scholar · View at Scopus
  37. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature, vol. 421, no. 6919, pp. 172–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Sedmera, “Form follows function: developmental and physiological view on ventricular myocardial architecture,” European Journal of Cardio-thoracic Surgery, vol. 28, no. 4, pp. 526–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Garita, M. W. Jenkins, M. Han et al., “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” American Journal of Physiology, vol. 300, no. 3, pp. H879–H891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. K. Linask and M. Vanauker, “A role for the cytoskeleton in heart looping,” The Scientific World Journal, vol. 7, pp. 280–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. C. W. Groenendijk, B. P. Hierck, A. C. Gittenberger-De Groot, and R. E. Poelmann, “Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos,” Developmental Dynamics, vol. 230, no. 1, pp. 57–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk et al., “Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo,” Circulation Research, vol. 96, no. 12, pp. 1291–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. K. L. Moore and T. V. N. Persaud, The Developing Human: Clinically Oriented Embryology, Saunders, Philadelphia, Pa, USA, 2003.
  44. C. Kwon, J. Arnold, E. C. Hsiao, M. M. Taketo, B. R. Conklin, and D. Srivastava, “Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 26, pp. 10894–10899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Kwon, K. R. Cordes, and D. Srivastava, “Wnt/β-catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis,” Cell Cycle, vol. 7, no. 24, pp. 3815–3818, 2008. View at Google Scholar · View at Scopus
  46. K. K. Linask, K. A. Knudsen, and Y. H. Gui, “N-Cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development,” Developmental Biology, vol. 185, no. 2, pp. 148–164, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Ueno, G. Weidinger, T. Osugi et al., “Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9685–9690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Pollheimer, T. Loregger, S. Sonderegger et al., “Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast,” American Journal of Pathology, vol. 168, no. 4, pp. 1134–1147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Sonderegger, H. Husslein, C. Leisser, and M. Knöfler, “Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes,” Placenta, vol. 28, pp. S97–S102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. I. García-Castro, C. Marcelle, and M. Bronner-Fraser, “Ectodermal Wnt function as a neural crest inducer,” Science, vol. 297, no. 5582, pp. 848–851, 2002. View at Google Scholar · View at Scopus
  51. A. K. Knecht and M. Bronner-Fraser, “Induction of the neural crest: a multigene process,” Nature Reviews Genetics, vol. 3, no. 6, pp. 453–461, 2002. View at Google Scholar · View at Scopus
  52. S. Ruffins and M. Bronner-Fraser, “A critical period for conversion of ectodermal cells to a neural crest fate,” Developmental Biology, vol. 218, no. 1, pp. 13–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. K. L. Waldo, M. R. Hutson, C. C. Ward et al., “Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart,” Developmental Biology, vol. 281, no. 1, pp. 78–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. L. Waldo, D. H. Kumiski, K. T. Wallis et al., “Conotruncal myocardium arises from a secondary heart field,” Development, vol. 128, no. 16, pp. 3179–3188, 2001. View at Google Scholar · View at Scopus
  55. M. V. de la Cruz and C. Sanchez-Gomez, “Straight tube heart. Primitive cardiac cavities vs. primitive cardiac segments,” in Living Morphogenesis of the Heart, M. V. de la Cruz and R. R. Markwald, Eds., pp. 85–98, Birkhauser, Boston, Mass, USA, 1998. View at Google Scholar
  56. R. R. Markwald, T. Nakaoka, and C. H. Mjaatvedt, “Overview: formation of the primary heart tube,” in Etiology and Morphogenesis of Congenital Heart Disease: Twenty Years of Progress in Genetics and Developmental Biology, E. B. Clark, M. Nakazawa, and A. Takao, Eds., pp. 103–114, Futura, New York, NY, USA, 2000. View at Google Scholar
  57. K. Linask, Y. H. Gui, R. Rasheed, and L. Kwon, “Pattern development during pericardial coelom formation and specification of the cardiomyocyte cell population by N-cadherin and the Drosophila armadillo protein homologue in the early chick embryo,” Molecular Biology of the Cell, vol. 3, p. 206A, 1992. View at Google Scholar
  58. C. L. Cai, X. Liang, Y. Shi et al., “Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart,” Developmental Cell, vol. 5, no. 6, pp. 877–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. M. P. Verzi, D. J. McCulley, S. De Val, E. Dodou, and B. L. Black, “The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field,” Developmental Biology, vol. 287, no. 1, pp. 134–145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. C. A. Loffredo, “Epidemiology of cardiovascular malformations: prevalence and risk factors,” American Journal of Medical Genetics, vol. 97, pp. 319–325, 2000. View at Google Scholar
  61. M. L. Kirby, A. Lawson, H. A. Stadt et al., “Hensen's node gives rise to the ventral midline of the foregut: implications for organizing head and heart development,” Developmental Biology, vol. 253, no. 2, pp. 175–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. E. M. Pera and E. M. De Robertis, “A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists crescent and frzb-1,” Obstetrics and Gynecology, vol. 96, no. 3, pp. 183–195, 2000. View at Google Scholar · View at Scopus
  63. A. F. Schier, S. C. F. Neuhauss, K. A. Helde, W. S. Talbot, and W. Driever, “The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail,” Development, vol. 124, no. 2, pp. 327–342, 1997. View at Google Scholar · View at Scopus
  64. R. Seifert, M. Jacob, and H. J. Jacob, “The avian prechordal head region: a morphological study,” Journal of Anatomy, vol. 183, part 1, pp. 75–89, 1993. View at Google Scholar · View at Scopus
  65. A. Wessels, R. H. Anderson, R. R. Markwald et al., “Atrial development in the human heart: an immunohistochemical study with emphasis on the role of mesenchymal tissues,” The Anatomical Record, vol. 259, pp. 288–300, 2000. View at Google Scholar
  66. R. H. Anderson, S. Webb, N. A. Brown, W. Lamers, and A. Moorman, “Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks,” Heart, vol. 89, no. 9, pp. 1110–1118, 2003. View at Google Scholar · View at Scopus
  67. B. S. Snarr, E. E. Wirrig, A. L. Phelps, T. C. Trusk, and A. Wessels, “A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development,” Developmental Dynamics, vol. 236, no. 5, pp. 1287–1294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Lincoln, A. W. Lange, and K. E. Yutzey, “Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development,” Developmental Biology, vol. 294, no. 2, pp. 292–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Lincoln and K. E. Yutzey, “Molecular and developmental mechanisms of congenital heart valve disease,” Birth Defects Research A, vol. 91, no. 6, pp. 526–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. J. S. Fitzgerald, A. Germeyer, B. Huppertz et al., “Governing the invasive trophoblast: current aspects on intra- and extracellular regulation,” American Journal of Reproductive Immunology, vol. 63, no. 6, pp. 492–505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Carrel, P. A. Hunt, and H. F. Willard, “Tissue and lineage-specific variation in inactive X chromosome expression of the murine Smcx gene,” Human Molecular Genetics, vol. 5, no. 9, pp. 1361–1366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Cross, M. Hemberger, Y. Lu, T. Nozaki, and K. Whitely, “Trophoblast functins, angiogenesis and remodeling of the maternal vasculatrue in the placenta,” Molecular and Cellular Endocrinology, vol. 187, pp. 207–212, 2002. View at Google Scholar
  73. N. J. Hannan and L. A. Salamonsen, “Role of chemokines in the endometrium and in embryo implantation,” Current Opinion in Obstetrics and Gynecology, vol. 19, no. 3, pp. 266–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. L. K. Harris, “Review: trophoblast-vascular cell Interactions in early pregnancy: how to remodel a vessel,” Placenta, vol. 31, pp. S93–S98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Afonso, L. Romagnano, and B. Bablarz, “The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation,” Development, vol. 124, no. 17, pp. 3415–3425, 1997. View at Google Scholar · View at Scopus
  76. A. Cattelino, S. Liebner, R. Gallini et al., “The conditional inactivation of the β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility,” Journal of Cell Biology, vol. 162, no. 6, pp. 1111–1122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. O. A. Mohamed, M. Jonnaert, C. Labelle-Dumais, K. Kuroda, H. J. Clarke, and D. Dufort, “Uterine Wnt/β-catenin signaling is required for implantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 24, pp. 8579–8584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Caluwaerts, L. Vercruysse, C. Luyten, and R. Pijnenborg, “Endovascular trophoblast invasion and associated structural changes in uterine spiral arteries of the pregnant rat,” Placenta, vol. 26, no. 7, pp. 574–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. M. A. Conti, S. Even-Ram, C. Liu, K. M. Yamada, and R. S. Adelstein, “Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 41263–41266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. A. N. Tullio, D. Accili, V. J. Ferrans et al., “Nonmuscle myosin II-B is required for normal development of the mouse heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12407–12412, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. W. Lu, S. H. Seeholzer, M. Han et al., “Cellular nonmuscle myosins NMHC-IIA and NMHC-IIB and vertebrate heart looping,” Developmental Dynamics, vol. 237, no. 12, pp. 3577–3590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Cains, A. Shepherd, M. Nabiuni, P. J. Owen-Lynch, and J. Miyan, “Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 4, pp. 404–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. L. M. De-Regil, A. C. Fernandez-Gaxiola, T. Dowswell, and J. P. Pena-Rosas, “Effects and safety of periconceptional folate supplementation for preventing birth defects,” Cochrane Database of Systematic Reviews, vol. 10, Article ID CD007950, 2010. View at Google Scholar
  84. A. Rosano, D. Smithells, L. Cacciani et al., “Time trends in neural tube defects prevalence in relation to preventive strategies: an international study,” Journal of Epidemiology and Community Health, vol. 53, no. 10, pp. 630–635, 1999. View at Google Scholar · View at Scopus
  85. S. Thompson, M. Torres, R. Stevenson, J. Dean, and R. Best, “Periconceptional vitamin use, dietary folate and occurrent neural tube defected pregnancies in a high risk population,” Annals of Epidemiology, vol. 10, no. 7, p. 476, 2000. View at Google Scholar
  86. R. Ionescu-Ittu, A. J. Marelli, A. S. Mackie, and L. Pilote, “Prevalence of severe congenital heart disease after folic acid fortification of grain products: time trend analysis in Quebec, Canada,” The British Medical Journal, vol. 338, p. b1673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Czeizel, “Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation,” American Journal of Medical Genetics, vol. 62, pp. 179–183, 1996. View at Google Scholar
  88. A. E. Czeizel, E. H. Puhó, Z. Langmar, N. Ács, and F. Bánhidy, “Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: a population-based study,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 148, no. 2, pp. 135–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Pickell, K. Brown, D. Li et al., “High intake of folic acid disrupts embryonic development in mice,” Birth Defects Research A, vol. 91, no. 1, pp. 8–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. O. Aguilera, A. F. Fernandez, A. Munoz, and M. F. Fraga, “Epigenetics and environment: a complex relationship,” Journal of Applied Physiology, vol. 109, no. 1, pp. 243–251, 2010. View at Publisher · View at Google Scholar
  91. V. Bollati and A. Baccarelli, “Environmental epigenetics,” Heredity, vol. 105, no. 1, pp. 105–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. L. M. Villeneuve and R. Natarajan, “The role of epigenetics in the pathology of diabetic complications,” American Journal of Physiology, vol. 299, no. 1, pp. F14–F25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. A. C. Foley and M. Mercola, “Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex,” Genes and Development, vol. 19, no. 3, pp. 387–396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Broun, L. Gee, B. Reinhardt, and H. R. Bode, “Formation of the head organizer in hydra involves the canonical Wnt pathway,” Development, vol. 132, no. 12, pp. 2907–2916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Carmona-Fontaine, H. K. Matthews, S. Kuriyama et al., “Contact inhibition of locomotion in vivo controls neural crest directional migration,” Nature, vol. 456, no. 7224, pp. 957–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. M. A. Chacón, L. Varela-Nallar, and N. C. Inestrosa, “Frizzled-1 is involved in the neuroprotective effect of Wnt3a against Aβ oligomers,” Journal of Cellular Physiology, vol. 217, no. 1, pp. 215–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. T. M. Nafee, W. E. Farrell, W. D. Carroll, A. A. Fryer, and K. M. K. Ismail, “Epigenetic control of fetal gene expression,” British Journal of Obstetrics and Gynaecology, vol. 115, no. 2, pp. 158–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. J. C. Kiefer, “Epigenetics in development,” Developmental Dynamics, vol. 236, no. 4, pp. 1144–1156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Gessert and M. Kühl, “The multiple phases and faces of Wnt signaling during cardiac differentiation and development,” Circulation Research, vol. 107, no. 2, pp. 186–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. O. Aguilera, M. F. Fraga, E. Ballestar et al., “Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer,” Oncogene, vol. 25, no. 29, pp. 4116–4121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Liu, Y. Balaraman, G. Wang, K. P. Nephew, and F. C. Zhou, “Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation,” Epigenetics, vol. 4, no. 7, pp. 500–511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. F. C. Zhou, Y. Chen, and A. Love, “Cellular DNA methylation program during neurulation and its alteration by alcohol exposure,” Birth Defects Research A, vol. 91, no. 8, pp. 703–715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. L. A. Ouko, K. Shantikumar, J. Knezovich, P. Haycock, D. J. Schnugh, and M. Ramsay, “Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes—implications for fetal alcohol spectrum disorders,” Alcoholism, vol. 33, no. 9, pp. 1615–1627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Burd, E. Deal, R. Rios, E. Adickes, J. Wynne, and M. G. Klug, “Congenital heart defects and fetal alcohol spectrum disorders,” Congenital Heart Disease, vol. 2, no. 4, pp. 250–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. P. W. Yoon, R. S. Olney, M. J. Khoury, W. M. Sappenfield, G. F. Chavez, and D. Taylor, “Contribution of birth defects and genetic diseases to pediatric hospitalizations: a population-based study,” Archives of Pediatrics and Adolescent Medicine, vol. 151, no. 11, pp. 1096–1103, 1997. View at Google Scholar · View at Scopus
  106. W. J. Larsen, Human Embryology, Churchill Livingstone, New York, NY, USA, 1993.