Journal of Pathogens
 Journal metrics

Metrics will be available once more articles are published.

Topical Bambusa vulgaris Extract Enhances Wound Healing in Cutaneous Leishmaniasis

Read the full article

 Journal profile

Journal of Pathogens publishes papers on all aspects of pathogens and pathogen-host interactions, covering all pathogenic bacteria, viruses, fungi, prions, parasites, and protozoa that infect humans, animals, or plants.

 Editor spotlight

Chief Editor, Professor Chambers, is a biochemist with expertise in various techniques for the detection and diagnosis of Influenza and bacterial pathogens.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Antimalarial Activity of Nigella sativa L. Seed Extracts and Selection of Resistance in Plasmodium berghei ANKA in a Mouse Model

Background. Chemotherapy plays a crucial role in malaria control. However, the main obstacle to treatment has been the rise of parasite resistance to most antimalarial drugs. Artemisinin-based combination therapies (ACTs) remain the most effective antimalarial medicines available today. However, malaria parasite tolerance to ACTs is now increasingly prevalent especially in Southeast Asia presenting the danger of the spread of ACTs resistance to other parts of the world. Consequently, this creates the need for alternative effective antimalarials. Therefore, this study sought out to determine antimalarial potential, safety, and resistance development of the extracts in a mouse model. Method. Methanolic and ethyl acetate extracts were obtained by solvent extraction. The extracts were assayed for acute toxicity in vivo. Additionally, the two extracts were evaluated for antimalarial activity in vivo against Plasmodium berghei ANKA strain by the 4-day suppressive test at 500, 250, and 125 mg/kg/day. Packed cell volume was evaluated to determine anemia manifestation. Finally, continuous drug pressure experiment at 500 mg/kg and DNA amplification via PCR were conducted. The amplicons underwent through Sanger sequencing. Results. There was no toxicity realized in the animals at 2000 mg/kg. Importantly, high parasitemia suppression of 75.52% and 75.30% using a dose of 500 mg/kg of methanolic and ethyl acetate extracts, respectively, was noted. The extracts were able to reverse packed cell volume reduction. Nigella sativa-resistant phenotype was selected as delayed parasite clearance. However, there was no change in the nucleotide sequences of PbMDR1 and PbCRT genes. Conclusion. The results provide room for future exploitation of the plant as an antimalarial.

Review Article

SARS-CoV-2, Early Entry Events

Viruses are obligate intracellular parasites, and host cell entry is the first step in the viral life cycle. The SARS-CoV-2 (COVID-19) entry process into susceptible host tissue cells is complex requiring (1) attachment of the virus via the conserved spike (S) protein receptor-binding motif (RBM) to the host cell angiotensin-converting-enzyme 2 (ACE2) receptor, (2) S protein proteolytic processing, and (3) membrane fusion. Spike protein processing occurs at two cleavage sites, i.e., S1/S2 and . Cleavage at the S1/S2 and sites ultimately gives rise to generation of competent fusion elements important in the merging of the host cell and viral membranes. Following cleavage, shedding of the S1 crown results in significant conformational changes and fusion peptide repositioning for target membrane insertion and fusion. Identification of specific protease involvement has been difficult due to the many cell types used and studied. However, it appears that S protein proteolytic cleavage is dependent on (1) furin and (2) serine protease transmembrane protease serine 2 proteases acting in tandem. Although at present not clear, increased SARS-CoV-2 S receptor-binding motif binding affinity and replication efficiency may in part account for observed differences in infectivity. Cleavage of the ACE2 receptor appears to be yet another layer of complexity in addition to forfeiture and/or alteration of ACE2 function which plays an important role in cardiovascular and immune function.

Research Article

Toxin Production and Resistance of Staphylococcus Species Isolated from Fermented Artisanal Dairy Products in Benin

Staphylococcus species are considered as one of the major pathogens causing outbreaks of food poisoning. The aim of this work was to assess the toxinogenic and antibiotic susceptibility profiles of the strains of Staphylococcus spp isolated from three types of fermented dairy products (yoghourt, millet dêguê, and couscous dêguê). The isolation of the Staphylococcus strains was performed on selective media, and their identification was done using biochemical and molecular methods. The susceptibility at 15 antibiotics tested was assessed using the disc diffusion method. The immunodiffusion method was used to evaluate the toxin (luk-E/D, luk-S/F, ETA, and ETB) production. Biofilm formation was qualitatively researched on microplates. Less than half (42.77%) of the collected samples were contaminated with Staphylococcus spp. The yoghourt and millet dêguê samples collected in the afternoon were more contaminated than those collected in the morning. The S. aureus, S. capitis, and S. xylosus strains, respectively, were the most present. S. aureus was the only coagulase-positive species identified in our samples. The highest resistance to antibiotics was observed with penicillin (100%) irrespective of the nature of the sample. S. aureus strains were highly (71.4%) resistant to methicillin. The S. aureus strains were the most biofilm-forming (27.6%), followed by S. capitis strains. Panton and Valentine’s leukocidin (luk-S/F) was produced by only S. aureus strains at a rate of 8.33%. Only coagulase-negative Staphylococcus (CNS) produced Luk-E/D. The high rates of Staphylococci contamination indicate bad hygiene quality during the production and distribution of dairy products. It is, therefore, necessary to improve the quality of fermented milk products.

Review Article

Stopping the COVID-19 Pandemic: A Review on the Advances of Diagnosis, Treatment, and Control Measures

With the continued spread of COVID-19 across the world, rapid diagnostic tools, readily available respurposable drugs, and prompt containment measures to control the SARS-CoV-2 infection are of paramount importance. Examples of recent advances in diagnostic tests are CRISPR technology, IgG assay, spike protein detection, and use of artificial intelligence. The gold standard reverse transcription polymerase chain (RT-PCR) has also been upgraded with point-of-care rapid tests. Supportive treatment, mechanical ventilation, and extracorporeal membrane oxygenation (ECMO) remain the primary choice, while therapeutic options include antivirals, antiparasitics, anti-inflammatories, interferon, convalescent plasma, monoclonal antibody, hyperimmunoglobulin, RNAi, and mesenchymal stem cell therapy. Different types of vaccines such as RNA, DNA, and lentiviral, inactivated, and viral vector are in clinical trials. Moreover, rapidly deployable and easy-to-transport innovative vaccine delivery systems are also in development. As countries have started easing down on the lockdown measures, the chance for a second wave of infection demands strict and rational control policies to keep fatalities minimized. An improved understanding of the advances in diagnostic tools, treatments, vaccines, and control measures for COVID-19 can provide references for further research and aid better containment strategies.

Research Article

Evaluation of Actin-1 Expression in Wild Caught Wuchereria bancrofti-Infected Mosquito Vectors

Background. Wuchereria bancrofti is the major cause of lymphatic filariasis transmitted by mosquito vectors. In the vector-parasite interaction and among other proteins, actin-1 has been implicated for successful transmission of the pathogen in laboratory-controlled experiments. However, validation of this finding from the pathogen’s natural environment is required. Objective. This study is aimed at evaluating actin-1 expression upon Wuchereria bancrofti infection in mosquito vectors collected during an epidemiology study in Tsafe Local Government Area of Zamfara State, Nigeria. Methods. Mosquitoes were collected and identified using morphological keys, which include length of maxillary palps, pale spots on the wings, and scale patterns on the abdomen. This was followed by detection of the 188 bp SspI marker of Wuchereria bancrofti infection using polymerase chain reaction (PCR). The mRNA levels of the actin-1 gene were evaluated in the infected Anopheles gambiae sl and Culex quinquefasciatus and their controls, which were adult reared from the larvae in the study area. Results. The mosquitoes were identified to be Anopheles gambiae sl and Culex quinquefasciatus, while infection by Wuchereria bancrofti was confirmed by amplification of the 188 bp SspI marker. A 4.85 and 4.09 relative fold increase in actin-1 gene expression in Wuchereria bancrofti-infected Anopheles gambiae sl and Culex quinquefasciatus was observed. Thus, for the first time we reported that the actin-1 gene in wild caught mosquito vectors (Anopheles gambiae sl and Culex quinquefasciatus) infected with Wuchereria bancrofti is upregulated. Conclusion. The actin-1 gene is upregulated and similarly expressed during W. bancrofti infection in mosquito vectors in the study area and this may likely serve as a biomarker and viable strategy for the control of parasite transmission in endemic areas.

Research Article

Study on Periplaneta americana (Blattodea: Blattidae) Fungal Infections in Hospital Sewer System, Esfahan City, Iran, 2017

Background. American cockroaches contaminated with pathogens inside hospital manholes can be one of the major problems that health care systems face. Objectives. The aim of this study was to investigate the fungal infections of American cockroaches in the Esfahan hospital sewage network. The principle goal of the study was about the roaches as a vector of fungi and other pathogens. Method. The type of study was descriptive-analytical. A total of 55 American cockroach specimens from the manhole walls of the sewerage system of 7 large hospitals were captured. Samples were taken from the surface of the body, digestive tract, and haemocoel of cockroaches. The specimens were then cultured on Sabouraud dextrose agar separately, and fungi were identified according to the macroscopic and microscopic characteristics. Results. All cockroaches collected from hospitals were infected with fungi. Among the 24 (13 infected and 11 noninfected) (44%) female cockroaches and 31 (18 infected and 13 noninfected) (56%) male cockroaches, it was identified that 40.00% was infected with Aspergillus niger, 3.64% with Rhizopus, 7.27% with Penicillium, and 5.45% with Mucor. 6 cockroaches had no yeast contamination. 17 (30.91%) cockroaches were contaminated with Candida glabrata, 23 (41.82%) cockroaches were contaminated with Candida krusei, and 22 (40%) cockroaches were contaminated with other yeast species. The results of this study showed that Candida krusei had the highest prevalence among the isolated fungi with 35.37% of the digestive system and Aspergillus niger with 70.97% of the surface of the cockroach body. Conclusion. The results emphasized the role played by cockroaches as potential pathogenic vectors in hospital environments. Therefore, suitable management is needed for controlling this insect to prevent disease transmission in hospitals.

Journal of Pathogens
 Journal metrics

Metrics will be available once more articles are published.

 Submit