Table of Contents Author Guidelines Submit a Manuscript
Journal of Pathogens
Volume 2012 (2012), Article ID 361374, 10 pages
http://dx.doi.org/10.1155/2012/361374
Review Article

Lipid Droplets and Mycobacterium leprae Infection

1Department of Research and Development, LIONEX Diagnostics and Therapeutics GmbH, 38126 Braunschweig, Germany
2Department of Genome Analytics, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany

Received 3 September 2012; Accepted 12 October 2012

Academic Editor: Timothy J. Johnson

Copyright © 2012 Ayssar A. Elamin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Ridley and W. H. Jopling, “Classification of leprosy according to immunity. A five-group system,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 34, no. 3, pp. 255–273, 1966. View at Google Scholar · View at Scopus
  2. WHO, “WHO Leprosy Today,” WHO, 2010.
  3. C. L. Cosma, D. R. Sherman, and L. Ramakrishnan, “The secret lives of the pathogenic mycobacteria,” Annual Review of Microbiology, vol. 57, pp. 641–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Scollard, “Endothelial cells and the pathogenesis of lepromatous neuritis: insights from the armadillo model,” Microbes and Infection, vol. 2, no. 15, pp. 1835–1843, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. K. A. Mattos, F. A. Lara, V. G. C. Oliveira et al., “Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes,” Cellular Microbiology, vol. 13, no. 2, pp. 259–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Scollard, L. B. Adams, T. P. Gillis, J. L. Krahenbuhl, R. W. Truman, and D. L. Williams, “The continuing challenges of leprosy,” Clinical Microbiology Reviews, vol. 19, no. 2, pp. 338–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. V. D. Vissa and P. J. Brennan, “Impact of the Mycobacterium leprae genome sequence on leprosy research,” in Genomics of GC-Rich Gram-Positive Bacteria, A. Danchin, Ed., Band 2, pp. 85–118, Caister Academic Press, 2002. View at Google Scholar
  8. D. S. S. Raphael Rubin and R. Emanuel, Eds., Rubin's Pathology: Clinicopathologic Foundations of Medicine, Lippincott Williams & Wilkins, 2007.
  9. R. Virchow, Die Krankhaften Geschwülste, August Hirschwald, Berlin, Germany, 1863.
  10. D. G. Russell, P. J. Cardona, M. J. Kim, S. Allain, and F. Altare, “Foamy macrophages and the progression of the human tuberculosis granuloma,” Nature Immunology, vol. 10, no. 9, pp. 943–948, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Dubos and G. Middlebrook, “Media for tubercle bacilli,” The American Review of Tuberculosis, vol. 56, no. 4, pp. 334–345, 1947. View at Google Scholar
  12. P. R. Wheeler, K. Bulmer, and C. Ratledge, “Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis?” Journal of General Microbiology, vol. 136, no. 1, pp. 211–217, 1990. View at Google Scholar · View at Scopus
  13. O. Neyrolles, R. Hernández-Pando, F. Pietri-Rouxel et al., “Is adipose tissue a place for Mycobacterium tuberculosis persistence?” PLoS ONE, vol. 1, no. 1, article e43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. J. Garton, S. J. Waddell, A. L. Sherratt et al., “Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum,” PLoS Medicine, vol. 5, no. 4, article e75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. L. Burdon, “Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations,” Journal of Bacteriology, vol. 52, no. 6, pp. 665–678, 1946. View at Google Scholar
  16. G. Knaysi, J. Hillier, and C. Fabricant, “The cytology of an avian strain of Mycobacterium tuberculosis studied with the electron and light microscopes,” Journal of Bacteriology, vol. 60, no. 4, pp. 423–447, 1950. View at Google Scholar · View at Scopus
  17. W. B. Schaefer and C. W. Lewis Jr., “Effect of oleic acid on growth and cell structure of mycobacteria,” Journal of Bacteriology, vol. 90, no. 5, pp. 1438–1447, 1965. View at Google Scholar · View at Scopus
  18. E. M. Brieger and A. M. Glauert, “Electron microscopy of the leprosy bacillus: a study of submicroscopical structure,” Tubercle, vol. 37, no. 3, pp. 195–206, 1956. View at Google Scholar · View at Scopus
  19. G. R. Gale and H. H. Mclain, “Effect of ethambutol on cytology of Mycobacterium smegmatis,” Journal of Bacteriology, vol. 86, pp. 749–756, 1963. View at Google Scholar · View at Scopus
  20. R. L. Whitehouse, P. C. Wong, and F. L. Jackson, “Ultrastructure of Mycobacterium lepraemurium,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 39, no. 2, pp. 151–163, 1971. View at Google Scholar · View at Scopus
  21. R. E. Weir, P. E. M. Fine, S. Floyd et al., “Comparison of IFN-γ responses to mycobacterial antigens as markers of response to BCG vaccination,” Tuberculosis, vol. 88, no. 1, pp. 31–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Barksdale and K. S. Kim, “Mycobacterium,” Bacteriological Reviews, vol. 41, no. 1, pp. 217–372, 1977. View at Google Scholar · View at Scopus
  23. P. Draper, “The anatomy of the mycobacteria,” in The Biology of the Mycobacteria, C. Ratledge and J. Stanford, Eds., pp. 9–52, Academic Press, London, UK, 1982. View at Google Scholar
  24. R. M. van Boxtel, R. S. Lambrecht, and M. T. Collins, “Effect of polyoxyethylene sorbate compounds (Tweens) on colonial morphology, growth, and ultrastructure of Mycobacterium paratuberculosis,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 98, no. 10, pp. 901–908, 1990. View at Google Scholar · View at Scopus
  25. N. J. Garton, H. Christensen, D. E. Minnikin, R. A. Adegbola, and M. R. Barer, “Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum,” Microbiology, vol. 148, no. 10, pp. 2951–2958, 2002. View at Google Scholar · View at Scopus
  26. J. Daniel, C. Deb, V. S. Dubey et al., “Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture,” Journal of Bacteriology, vol. 186, no. 15, pp. 5017–5030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Peyron, J. Vaubourgeix, Y. Poquet et al., “Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence,” PLoS Pathogens, vol. 4, no. 11, Article ID e1000204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Hagge, S. Oby Robinson, D. Scollard, G. McCormick, and D. L. Williams, “A new model for studying the effects of Mycobacterium leprae on Schwann cell and neuron interactions,” The Journal of Infectious Diseases, vol. 186, no. 9, pp. 1283–1296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Cruz, A. D. Watson, C. S. Miller et al., “Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy,” The Journal of Clinical Investigation, vol. 118, no. 8, pp. 2917–2928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. K. Job, “Mycobacterium leprae in nerve lesions in lepromatous leprosy. An electron microscopic study,” Archives of Pathology, vol. 89, no. 3, pp. 195–207, 1970. View at Google Scholar · View at Scopus
  31. K. Tanigawa, K. Suzuki, K. Nakamura et al., “Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with Mycobacterium leprae,” FEMS Microbiology Letters, vol. 289, no. 1, pp. 72–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. A. Mattos, H. D'Avila, L. S. Rodrigues et al., “Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis,” Journal of Leukocyte Biology, vol. 87, no. 3, pp. 371–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Underhill, “Toll-like receptors: networking for success,” European Journal of Immunology, vol. 33, no. 7, pp. 1767–1775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Suzuki, F. Takeshita, N. Nakata, N. Ishii, and M. Makino, “Localization of CORO1A in the macrophages containing Mycobacterium leprae,” Acta Histochemica et Cytochemica, vol. 39, no. 4, pp. 107–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Gatfield and J. Pieters, “Essential role for cholesterol in entry of mycobacteria into macrophages,” Science, vol. 288, no. 5471, pp. 1647–1650, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. P. K. Anand and D. Kaul, “Downregulation of TACO gene transcription restricts mycobacterial entry/survival within human macrophages,” FEMS Microbiology Letters, vol. 250, no. 1, pp. 137–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. K. A. Mattos, V. G. C. Oliveira, H. D'Avila et al., “TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence,” The Journal of Immunology, vol. 187, no. 5, pp. 2548–2558, 2011. View at Publisher · View at Google Scholar
  38. H. D'Avila, R. C. N. Melo, G. G. Parreira, E. Werneck-Barroso, H. C. Castro-Faria-Neto, and P. T. Bozza, “Mycobacterium bovis bacillus Calmette-Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo,” The Journal of Immunology, vol. 176, no. 5, pp. 3087–3097, 2006. View at Google Scholar · View at Scopus
  39. P. E. Almeida, A. R. Silva, C. M. Maya-Monteiro et al., “Mycobacterium bovis bacillus Calmette-Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor γ expression and activation: functions in inflammation, lipid metabolism, and pathogenesis,” The Journal of Immunology, vol. 183, no. 2, pp. 1337–1345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Philips, E. J. Rubin, and N. Perrimon, “Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection,” Science, vol. 309, no. 5738, pp. 1251–1253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. G. S. Palanisamy, N. M. Kirk, D. F. Ackart et al., “Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs,” PLoS One, vol. 7, no. 3, Article ID e34148, 2012. View at Publisher · View at Google Scholar
  42. I. G. Kurup and P. R. Mahadevan, “Cholesterol metobolism of macrophages in relation to the presence of Mycobacterium leprae,” Journal of Biosciences, vol. 4, no. 3, pp. 307–316, 1982. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Yoshimoto, Y. Fujita, A. Kakino, S. Iwamoto, T. Takaya, and T. Sawamura, “The discovery of LOX-1, its ligands and clinical significance,” Cardiovascular Drugs and Therapy, vol. 25, no. 5, pp. 379–391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Collot-Teixeira, J. Martin, C. McDermott-Roe, R. Poston, and J. L. McGregor, “CD36 and macrophages in atherosclerosis,” Cardiovascular Research, vol. 75, no. 3, pp. 468–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Leelahavanichkul, A. V. Bocharov, R. Kurlander et al., “Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice,” The Journal of Immunology, vol. 188, no. 6, pp. 2749–2758, 2012. View at Publisher · View at Google Scholar
  46. P. J. Brennan, “Mycobacterium leprae—the outer lipoidal surface,” Journal of Biosciences, vol. 6, no. 5, pp. 685–689, 1984. View at Publisher · View at Google Scholar · View at Scopus
  47. C. A. Fisher and L. Barksdale, “Cytochemical reactions of human leprosy bacilli and mycobacteria: ultrastructural implications,” Journal of Bacteriology, vol. 113, no. 3, pp. 1389–1399, 1973. View at Google Scholar · View at Scopus
  48. I. Sakurai and O. K. Skinsnes, “Lipids in leprosy. 2. Histochemistry of lipids in human leprosy,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 38, no. 4, pp. 389–403, 1970. View at Google Scholar · View at Scopus
  49. G. Kaplan, W. C. van Voorhis, E. N. Sarno et al., “The cutaneous infiltrates of leprosy. A transmission electron microscopy study,” The Journal of Experimental Medicine, vol. 158, no. 4, pp. 1145–1159, 1983. View at Google Scholar · View at Scopus
  50. S. W. Hunter and P. J. Brennan, “A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity,” Journal of Bacteriology, vol. 147, no. 3, pp. 728–735, 1981. View at Google Scholar · View at Scopus
  51. L. Guenin-Macé, R. Siméone, and C. Demangel, “Lipids of pathogenic Mycobacteria: contributions to virulence and host immune suppression,” Transboundary and Emerging Diseases, vol. 56, no. 6-7, pp. 255–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Ng, G. Zanazzi, R. Timpl et al., “Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae,” Cell, vol. 103, no. 3, pp. 511–524, 2000. View at Google Scholar · View at Scopus
  53. G. Puzo, “The carbohydrate- and lipid-containing cell wall of mycobacteria, phenolic glycolipids: structure and immunological properties,” Critical Reviews in Microbiology, vol. 17, no. 4, pp. 305–327, 1990. View at Google Scholar · View at Scopus
  54. J. Daniel, H. Maamar, C. Deb, T. D. Sirakova, and P. E. Kolattukudy, “Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages,” PLoS Pathogens, vol. 7, no. 6, Article ID e1002093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. D. J. Murphy, “The dynamic roles of intracellular lipid droplets: from archaea to mammals,” Protoplasma, vol. 249, no. 3, pp. 541–585, 2012. View at Publisher · View at Google Scholar
  56. A. Rambukkana, “Usage of signaling in neurodegeneration and regeneration of peripheral nerves by leprosy bacteria,” Progress in Neurobiology, vol. 91, no. 2, pp. 102–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Andersson, P. Boström, J. Ericson et al., “PLD1 and ERK2 regulate cytosolic lipid droplet formation,” Journal of Cell Science, vol. 119, no. 11, pp. 2246–2257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. B. H. J. Chang and L. Chan, “Regulation of Triglyceride Metabolism. III. Emerging role of lipid droplet protein ADFP in health and disease,” American Journal of Physiology, vol. 292, no. 6, pp. G1465–G1468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Spierings, T. de Boer, B. Wieles, L. B. Adams, E. Marani, and T. H. M. Ottenhoff, “Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy,” The Journal of Immunology, vol. 166, no. 10, pp. 5883–5888, 2001. View at Google Scholar · View at Scopus
  60. R. B. Oliveira, M. T. Ochoa, P. A. Sieling et al., “Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy,” Infection and Immunity, vol. 71, no. 3, pp. 1427–1433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. M. T. Talaue, V. Venketaraman, M. H. Hazbón et al., “Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection,” Journal of Bacteriology, vol. 188, no. 13, pp. 4830–4840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. R. C. Melo, H. D'Avila, H. C. Wan, P. T. Bozza, A. M. Dvorak, and P. F. Weller, “Lipid bodies in inflammatory cells: structure, function, and current imaging techniques,” The Journal of Histochemistry and Cytochemistry, vol. 59, no. 5, pp. 540–556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Yuan, P. Li, and J. Ye, “Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis,” Protein & Cell, vol. 3, no. 3, pp. 173–181, 2012. View at Publisher · View at Google Scholar
  64. H. D'Avila, N. R. Roque, R. M. Cardoso, H. C. Castro-Faria-Neto, R. C. N. Melo, and P. T. Bozza, “Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E2 production by macrophages,” Cellular Microbiology, vol. 10, no. 12, pp. 2589–2604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Rangel Moreno, I. Estrada García, M. de la Luz García Hernández, D. Aguilar Leon, R. Marquez, and R. Hernandez Pando, “The role of prostaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis,” Immunology, vol. 106, no. 2, pp. 257–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Persson, J. Nilsson, and M. W. Lindholm, “Interleukin-1beta and tumour necrosis factor-alpha impede neutral lipid turnover in macrophage-derived foam cells,” BMC Immunology, vol. 9, article 70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. M. Skoff, R. P. Lisak, B. Bealmear, and J. A. Benjamins, “TNF-alpha and TGF-beta act synergistically to kill Schwann cells,” Journal of Neuroscience Research, vol. 53, no. 6, pp. 747–756, 1998. View at Google Scholar
  68. M. Yamamura, K. Uyemura, R. J. Deans et al., “Defining protective responses to pathogens: cytokine profiles in leprosy lesions,” Science, vol. 254, no. 5029, pp. 277–279, 1991. View at Google Scholar · View at Scopus
  69. R. P. Lisak, D. Skundric, B. Bealmear, and S. Ragheb, “The role of cytokines in Schwann cell damage, protection, and repair,” The Journal of Infectious Diseases, vol. 176, supplement 2, pp. S173–S179, 1997. View at Google Scholar · View at Scopus
  70. J. L. Rutkowski, G. F. Tuite, P. M. Lincoln, P. J. Boyer, G. I. Tennekoon, and S. L. Kunkel, “Signals for proinflammatory cytokine secretion by human Schwann cells,” Journal of Neuroimmunology, vol. 101, no. 1, pp. 47–60, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Qin, C. Cheng, H. Wang, X. Shao, Y. Gao, and A. Shen, “TNF-α as an autocrine mediator and its role in the activation of Schwann cells,” Neurochemical Research, vol. 33, no. 6, pp. 1077–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. V. T. Ribeiro-Resende, M. L. Ribeiro-Guimarães, R. M. Lemes et al., “Involvement of 9-O-Acetyl GD3 ganglioside in Mycobacterium leprae infection of Schwann cells,” The Journal of Biological Chemistry, vol. 285, no. 44, pp. 34086–34096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. P. R. Wheeler and C. Ratledge, “Metabolism of Mycobacterium tuberculosis,” in Tuberculosis: Pathogenesis, Protection, and Control, B. R. Bloom, Ed., pp. 353–385, Washington, DC, USA, 1994. View at Google Scholar
  74. S. T. Cole, K. Eiglmeier, J. Parkhill et al., “Massive gene decay in the leprosy bacillus,” Nature, vol. 409, no. 6823, pp. 1007–1011, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Canaan, D. Maurin, H. Chahinian et al., “Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis: a novel carboxyl esterase structurally related to the HSL family,” European Journal of Biochemistry, vol. 271, no. 19, pp. 3953–3961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Deb, J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey, and P. E. Kolattukudy, “A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis,” The Journal of Biological Chemistry, vol. 281, no. 7, pp. 3866–3875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. K. L. Low, P. S. Rao, G. Shui et al., “Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin,” Journal of Bacteriology, vol. 191, no. 16, pp. 5037–5043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. T. D. Sirakova, V. S. Dubey, C. Deb et al., “Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress,” Microbiology, vol. 152, no. 9, pp. 2717–2725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. A. Elamin, M. Stehr, R. Spallek, M. Rohde, and M. Singh, “The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation,” Molecular Microbiology, vol. 81, no. 6, pp. 1577–1592, 2011. View at Publisher · View at Google Scholar
  80. K. L. Low, G. Shui, K. Natter et al., “Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guérin,” The Journal of Biological Chemistry, vol. 285, no. 28, pp. 21662–21670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Côtes, R. Dhouib, I. Douchet et al., “Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids,” Biochemical Journal, vol. 408, no. 3, pp. 417–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Lun and W. R. Bishai, “Characterization of a novel cell wall-anchored protein with carboxylesterase activity required for virulence in Mycobacterium tuberculosis,” The Journal of Biological Chemistry, vol. 282, no. 25, pp. 18348–18356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. E. J. Muñoz-Elías and J. D. McKinney, “Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence,” Nature Medicine, vol. 11, no. 6, pp. 638–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. J. D. McKinney, K. Höner zu Bentrup, E. J. Muñoz-Elías et al., “Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase,” Nature, vol. 406, no. 6797, pp. 735–738, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. V. Sharma, S. Sharma, K. Hoener zu Bentrup et al., “Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis,” Nature Structural & Molecular Biology, vol. 7, no. 8, pp. 663–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Kumar and V. Bhakuni, “Mycobacterium tuberculosis isocitrate lyase (MtbIcl): role of divalent cations in modulation of functional and structural properties,” Proteins, vol. 72, no. 3, pp. 892–900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Höner zu Bentrup, A. Miczak, D. L. Swenson, and D. G. Russell, “Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis,” Journal of Bacteriology, vol. 181, no. 23, pp. 7161–7167, 1999. View at Google Scholar · View at Scopus
  88. S. A. Ensign, “Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation,” Molecular Microbiology, vol. 61, no. 2, pp. 274–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. K. J. Williams, H. I. Boshoff, N. Krishnan, J. Gonzales, D. Schnappinger, and B. D. Robertson, “The Mycobacterium tuberculosisβ-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo,” Tuberculosis, vol. 91, no. 6, pp. 549–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Stehr, A. A. Elamin, and M. Singh, “Cytosolic lipid droplets formed during infection by bacterial and viral pathogens,” Microbes and Infection, vol. 14, no. 13, pp. 1227–1237, 2012. View at Publisher · View at Google Scholar
  91. D. L. Williams, M. Torrero, P. R. Wheeler et al., “Biological implications of Mycobacterium leprae gene expression during infection,” Journal of Molecular Microbiology and Biotechnology, vol. 8, no. 1, pp. 58–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Akama, K. Tanigawa, A. Kawashima, H. Wu, N. Ishii, and K. Suzuki, “Analysis of Mycobacterium leprae gene expression using DNA microarray,” Microbial Pathogenesis, vol. 49, no. 4, pp. 181–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Kornberg, “Krebs and his trinity of cycles,” Nature Reviews Molecular Cell Biology, vol. 1, no. 3, pp. 225–228, 2000. View at Google Scholar · View at Scopus
  94. H. M. Alvarez and A. Steinbüchel, “Triacylglycerols in prokaryotic microorganisms,” Applied Microbiology and Biotechnology, vol. 60, no. 4, pp. 367–376, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Kalscheuer and A. Steinbüchel, “A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 8075–8082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. A. K. Pandey and C. M. Sassetti, “Mycobacterial persistence requires the utilization of host cholesterol,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4376–4380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. L. I. Klepp, M. A. Forrellad, A. V. Osella et al., “Impact of the deletion of the six mce operons in Mycobacterium smegmatis,” Microbes and Infection, vol. 14, no. 7-8, pp. 590–599, 2012. View at Google Scholar