Table of Contents Author Guidelines Submit a Manuscript
Journal of Pathogens
Volume 2012, Article ID 781652, 6 pages
http://dx.doi.org/10.1155/2012/781652
Research Article

Rapid Detection and Identification of Yersinia pestis from Food Using Immunomagnetic Separation and Pyrosequencing

1Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, P.O. Box 640, Township Road 9-1, Lethbridge, AB, Canada T1J 3Z4
2Emerging Technologies Division, National Research Council, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
3Sir F. G. Banting Research Centre, Health Canada, 251 Sir Frederick Banting Dr., Tunney’s Pasture, Ottawa, ON, Canada K1A 0K9

Received 1 June 2012; Accepted 1 August 2012

Academic Editor: Dike O. Ukuku

Copyright © 2012 Crown. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Achtman, G. Morelli, P. Zhu et al., “Microevolution and history of the plague bacillus, Yersinia pestis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17837–17842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. L. Gage and M. Y. Kosoy, “Natural history of plague: perspectives from more than a century of research,” Annual Review of Entomology, vol. 50, pp. 505–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Duplantier, J. B. Duchemin, S. Chanteau, and E. Carniel, “From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence,” Veterinary Research, vol. 36, no. 3, pp. 437–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. V. Inglesby, D. T. Dennis, D. A. Henderson et al., “Plague as a biological weapon: medical and public health management,” JAMA, vol. 283, no. 17, pp. 2281–2290, 2000. View at Google Scholar · View at Scopus
  5. R. D. Perry and J. D. Fetherston, “Yersinia pestis—etiologic agent of plague,” Clinical Microbiology Reviews, vol. 10, no. 1, pp. 35–66, 1997. View at Google Scholar · View at Scopus
  6. J. M. Gabastou, J. Proaño, A. Vimos et al., “An outbreak of plague including cases with probable pneumonic infection, Ecuador, 1998,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 4, pp. 387–391, 2000. View at Google Scholar · View at Scopus
  7. A. Ruiz, “Plague in the Americas,” Emerging Infectious Diseases, vol. 7, no. 3, pp. 539–540, 2001. View at Google Scholar · View at Scopus
  8. V. N. FEDOROV, “Plague in camels and its prevention in the USSR,” Bulletin of the World Health Organization, vol. 23, pp. 275–281, 1960. View at Google Scholar · View at Scopus
  9. A. B. Christie, T. H. Chen, and S. S. Elberg, “Plague in camels and goats: their role in human epidemics,” Journal of Infectious Diseases, vol. 141, no. 6, pp. 724–726, 1980. View at Google Scholar · View at Scopus
  10. T. Leslie, C. A. Whitehouse, S. Yingst et al., “Outbreak of gastroenteritis caused by Yersinia pestis in Afghanistan,” Epidemiology and infection, vol. 139, no. 5, pp. 728–735, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. B. Atshabar, “Mechanism of formation of a population level of virulence of Yersinia pestis,” Advances in Experimental Medicine and Biology, vol. 529, pp. 329–332, 2003. View at Google Scholar · View at Scopus
  12. A. Arbaji, S. Kharabsheh, S. Al-Azab et al., “A 12-case outbreak of pharyngeal plague following the consumption of camel meat, in north-eastern Jordan,” Annals of Tropical Medicine and Parasitology, vol. 99, no. 8, pp. 789–793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Bin Saeed, N. A. Al-Hamdan, and R. E. Fontaine, “Plague from eating raw camel liver,” Emerging Infectious Diseases, vol. 11, no. 9, pp. 1456–1457, 2005. View at Google Scholar · View at Scopus
  14. T. J. Török, R. V. Tauxe, R. P. Wise et al., “A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars,” JAMA, vol. 278, no. 5, pp. 389–395, 1997. View at Google Scholar · View at Scopus
  15. M. Galimand, A. Guiyoule, G. Gerbaud et al., “Multidrug resistance in Yersinia pestis mediated by a transferable plasmid,” The New England Journal of Medicine, vol. 337, no. 10, pp. 677–680, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. T. C. Glenn, “Field guide to next-generation DNA sequencers,” Molecular Ecology Resources, vol. 11, pp. 759–769, 2011. View at Google Scholar
  17. A. Mellmann, D. Harmsen, C. A. Cummings et al., “Prospective genomic characterization of the german enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology,” PLoS ONE, vol. 6, no. 7, Article ID e22751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén, “Real-time DNA sequencing using detection of pyrophosphate release,” Analytical Biochemistry, vol. 242, no. 1, pp. 84–89, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ronaghi and E. Elahi, “Pyrosequencing for microbial typing,” Journal of Chromatography B, vol. 782, no. 1-2, pp. 67–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Shields, K. R. Hahn, T. W. Janzen et al., “Immunomagnetic capture of Bacillus anthracis spores from food,” Journal of Food Protection, vol. 75, pp. 1243–1248, 2012. View at Google Scholar
  21. K. K. Amoako, M. C. Thomas, F. Kong et al., “Rapid detection and antimicrobial resistance gene profiling of Yersinia pestis using pyrosequencing technology,” Journal of Microbiological Methods, vol. 90, no. 3, pp. 228–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. K. K. Amoako, N. Goji, T. Macmillan et al., “Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef,” Journal of Food Protection, vol. 73, no. 1, pp. 18–25, 2010. View at Google Scholar · View at Scopus
  23. A. J. G. Okrend, B. E. Rose, and C. P. Lattuada, “Isolation of Escherichia coli 0157:H7 using 0157 specific antibody coated magnetic beads,” Journal of Food Protection, vol. 55, pp. 214–217, 1992. View at Google Scholar
  24. J. A. W. Morgan, C. Winstanley, R. W. Pickup, and J. R. Saunders, “Rapid immunocapture of Pseudomonas putida cells from lake water by using bacterial flagella,” Applied and Environmental Microbiology, vol. 57, no. 2, pp. 503–509, 1991. View at Google Scholar · View at Scopus
  25. E. Skjerve, L. M. Rorvik, and O. Olsvik, “Detection of Listeria monocytogenes in foods by immunomagnetic separation,” Applied and Environmental Microbiology, vol. 56, no. 11, pp. 3478–3481, 1990. View at Google Scholar · View at Scopus
  26. E. Skjerve and O. Olsvik, “Immunomagnetic separation of Salmonella from foods,” International Journal of Food Microbiology, vol. 14, no. 1, pp. 11–17, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. S. I. Tu, S. Reed, A. Gehring, Y. He, and G. Paoli, “Capture of Escherichia coli O157:H7 using immunomagnetic beads of different size and antibody conjugating chemistry,” Sensors, vol. 9, no. 2, pp. 713–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Fu, S. Rogelj, and T. L. Kieft, “Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR,” International Journal of Food Microbiology, vol. 99, no. 1, pp. 47–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. B. H. Pyle, S. C. Broadaway, and G. A. McFeters, “Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry,” Applied and Environmental Microbiology, vol. 65, no. 5, pp. 1966–1972, 1999. View at Google Scholar · View at Scopus
  30. A. Rida and M. A. M. Gijs, “Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying,” Analytical Chemistry, vol. 76, no. 21, pp. 6239–6246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Wang, Y. Li, and A. Mustapha, “Rapid and simultaneous quantitation of Escherichia coli O157:H7, Salmonella, and Shigella in ground beef by multiplex real-time PCR and immunomagnetic separation,” Journal of Food Protection, vol. 70, no. 6, pp. 1366–1372, 2007. View at Google Scholar · View at Scopus
  32. V. Morton, J. Jean, J. Farber, and K. Mattison, “Detection of noroviruses in ready-to-eat foods by using carbohydrate-coated magnetic beads,” Applied and Environmental Microbiology, vol. 75, no. 13, pp. 4641–4643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Wahab, S. Hjalmarsson, R. Wollin, and L. Engstrand, “Pyrosequencing Bacillus anthracis,” Emerging Infectious Diseases, vol. 11, no. 10, pp. 1527–1531, 2005. View at Google Scholar · View at Scopus
  34. H. Unnerstad, H. Ericsson, A. Alderborn, W. Tham, M. L. Danielsson-Tham, and J. G. Mattsson, “Pyrosequencing as a method for grouping of Listeria monocytogenes strains on the basis of single-nucleotide polymorphisms in the inlB gene,” Applied and Environmental Microbiology, vol. 67, no. 3–12, pp. 5339–5342, 2001. View at Google Scholar · View at Scopus
  35. J. Jonasson, M. Olofsson, and H. J. Monstein, “Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16s rDNA fragments,” APMIS, vol. 115, no. 5, pp. 668–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. R. Blake and B. C. Weimer, “Immunomagnetic detection of Bacillus stearothermophilus spores in food and environmental samples,” Applied and Environmental Microbiology, vol. 63, no. 5, pp. 1643–1646, 1997. View at Google Scholar · View at Scopus
  37. M. Ronaghi, “Pyrosequencing sheds light on DNA sequencing,” Genome Research, vol. 11, no. 1, pp. 3–11, 2001. View at Publisher · View at Google Scholar · View at Scopus