Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2011 (2011), Article ID 368692, 9 pages
Research Article

In Vitro and In Vivo Antimalarial Activity Assays of Seeds from Balanites aegyptiaca: Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase

1Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Justus Von Liebig Street 20, 53359 Rheinbach, Germany
2Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
3Institut für Ägyptologie und Altorientalistik, Johannes Gutenberg Universität Mainz, Johann-Friedrich-von-Pfeiffer-Weg 5, 55128 Mainz, Germany
4School of Pharmacy and Life Sciences, Robert Gordon University, St. Andrew Street, Aberdeen AB25 1HG, UK
5Fakultät für Angewandte Naturwissenschaften, University of Applied Sciences, Betzdorfer Str. 2, 50679 Cologne, Germany

Received 14 November 2010; Revised 25 January 2011; Accepted 20 March 2011

Academic Editor: Xin-zhuan Su

Copyright © 2011 Peter Kusch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Balanites aegyptiaca (Balanitaceae) is a widely grown desert plant with multiuse potential. In the present paper, a crude extract from B. aegyptiaca seeds equivalent to a ratio of 1 : 2000 seeds to the extract was screened for antiplasmodial activity. The determined IC50 value for the chloroquine-susceptible Plasmodium falciparum NF54 strain was 68.26  πœ‡ g / πœ‡ L Β± 3 . 5 . Analysis of the extract by gas chromatography-mass spectrometry detected 6-phenyl-2(H)-1,2,4-triazin-5-one oxime, an inhibitor of the parasitic M18 Aspartyl Aminopeptidase as one of the compounds which is responsible for the in vitro antiplasmodial activity. The crude plant extract had a 𝐾 𝑖 of 2.35  πœ‡ g / πœ‡ L and showed a dose-dependent response. After depletion of the compound, a significantly lower inhibition was determined with a 𝐾 𝑖 of 4.8  πœ‡ g / πœ‡ L . Moreover, two phenolic compounds, that is, 2,6-di-tert-butyl-phenol and 2,4-di-tert-butyl-phenol, with determined IC50 values of 50.29  πœ‡ M Β± 3 and 47.82  πœ‡ M Β± 2 . 5 , respectively, were detected. These compounds may contribute to the in vitro antimalarial activity due to their antioxidative properties. In an in vivo experiment, treatment of BALB/c mice with the aqueous Balanite extract did not lead to eradication of the parasites, although a reduced parasitemia at day 12 p.i. was observed.