Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2011, Article ID 965369, 10 pages
Review Article

Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

1Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Mirassol 207, São Paulo 04044-010, SP, Brazil
2Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Mirassol, 207, São Paulo 04044-010, SP, Brazil
3Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
4Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Avenida Prof. Lineu Prestes 580, São Paulo 05508-900, SP, Brazil
5Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas 13083-970, SP, Brazil
6Departamento de Microbiologia do Instituto de Ciências Biomédicas Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374, São Paulo 05508-900, SP, Brazil

Received 1 December 2010; Accepted 18 January 2011

Academic Editor: Michael Lanzer

Copyright © 2011 Daniel Y. Bargieri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.