Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2011 (2011), Article ID 965369, 10 pages
http://dx.doi.org/10.1155/2011/965369
Review Article

Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

1Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Mirassol 207, São Paulo 04044-010, SP, Brazil
2Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Mirassol, 207, São Paulo 04044-010, SP, Brazil
3Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
4Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Avenida Prof. Lineu Prestes 580, São Paulo 05508-900, SP, Brazil
5Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas 13083-970, SP, Brazil
6Departamento de Microbiologia do Instituto de Ciências Biomédicas Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374, São Paulo 05508-900, SP, Brazil

Received 1 December 2010; Accepted 18 January 2011

Academic Editor: Michael Lanzer

Copyright © 2011 Daniel Y. Bargieri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Nussenzweig, J. Vanderberg, H. Most, and C. Orton, “Protective immunity produced by the injection of X-irradiated sporozoites of plasmodium berghei,” Nature, vol. 216, no. 5111, pp. 160–162, 1967. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Mueller, M. Labaied, S. Kappe, and K. Matuschewski, “Genetically modified Plasmodium parasites as a protective experimental malaria vaccine,” Nature, vol. 13, no. 7022, pp. 164–167, 2005. View at Google Scholar
  3. M. R. Van Dijk, B. Douradinha, B. Franke-Fayard et al., “Genetically attenuated P36p-deficient malarial sporozouites induce protective immunity and apoptosis of infected liver cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12194–12199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. M. VanBuskirk, M. T. O'Neill, P. De La Vega et al., “Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13004–13009, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. M. Ting, M. Gissot, A. Coppi, P. Sinnis, and K. Kim, “Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity,” Nature Medicine, vol. 14, no. 9, pp. 954–958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. I. Aly, M. J. Downie, C. B. Mamoun, and S. H. I. Kappe, “Subpatent infection with nucleoside transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice,” Cellular Microbiology, vol. 12, no. 7, pp. 930–938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Spaccapelo, C. J. Janse, S. Caterbi et al., “Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria,” American Journal of Pathology, vol. 176, no. 1, pp. 205–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Kumar, G. I. Sano, S. Boscardin et al., “The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites,” Nature, vol. 444, no. 7121, pp. 937–940, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Mauduit, A. C. Grüner, R. Tewari et al., “A role for immune responses against non-CS components in the cross-species protection induced by immunization with irradiated malaria sporozoites,” PLoS ONE, vol. 4, no. 11, article e7717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Romero, J. L. Maryanski, G. Corradin, R. S. Nussenzweig, V. Nussenzweig, and F. Zavala, “Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria,” Nature, vol. 341, no. 6240, pp. 323–326, 1989. View at Publisher · View at Google Scholar · View at Scopus
  11. E. H. Nardin, D. A. Herrington, J. Davis et al., “Conserved repetitive epitope recognized by CD4 clones from a malaria-immunized volunteer,” Science, vol. 246, no. 4937, pp. 1603–1606, 1989. View at Google Scholar · View at Scopus
  12. L. Renia, M. S. Marussig, D. Grillot et al., “In vitro activity of CD4+ and CD8+ T lymphocytes from mice immunized with a synthetic malaria peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 18, pp. 7963–7967, 1991. View at Google Scholar · View at Scopus
  13. M. M. Rodrigues, A. S. Cordey, G. Arreaza et al., “CD8+ cytolytic T cell clones derived against the Plasmodium yoelii circumsporozoite protein protect against malaria,” International Immunology, vol. 3, no. 6, pp. 579–585, 1991. View at Google Scholar · View at Scopus
  14. A. Malik, J. E. Egan, R. A. Houghten, J. C. Sadoff, and S. L. Hoffman, “Human cytotoxic T lymphocytes against the Plasmodium falciparum circumsporozoite protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3300–3304, 1991. View at Google Scholar · View at Scopus
  15. J. P. Tam, P. Clavijo, Y. A. Lu, V. Nussenzweig, R. Nussenzweig, and F. Zavala, “Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria,” Journal of Experimental Medicine, vol. 171, no. 1, pp. 299–306, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. E. H. Nardin, G. A. Oliveira, J. M. Calvo-Calle, and R. S. Nussenzweig, “The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases,” Advances in Immunology, vol. 60, pp. 105–149, 1995. View at Google Scholar · View at Scopus
  17. J. M. Calvo-Calle, G. A. Oliveira, C. O. Watta, J. Soverow, C. Parra-Lopez, and E. H. Nardin, “A linear peptide containing minimal T- and B-cell epitopes of Plasmodium falciparum circumsporozoite protein elicits protection against transgenic sporozoite challenge,” Infection and Immunity, vol. 74, no. 12, pp. 6929–6939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Bruña-Romero, G. González-Aseguinolaza, J. C. R. Hafalla, M. Tsuji, and R. S. Nussenzweig, “Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11491–11496, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Reyes-Sandoval, T. Berthoud, N. Alder et al., “Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses,” Infection and Immunity, vol. 78, no. 1, pp. 145–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. O. J. Ophorst, K. Radošević, M. J. E. Havenga et al., “Immunogenicity and protection of a recombinant human adenovirus serotype 35-based malaria vaccine against Plasmodium yoelii in mice,” Infection and Immunity, vol. 74, no. 1, pp. 313–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Shiratsuchi, U. Rai, A. Krause, S. Worgall, and M. Tsuji, “Replacing adenoviral vector HVR1 with a malaria B cell epitope improves immunogenicity and circumvents preexisting immunity to adenovirus in mice,” Journal of Clinical Investigation, vol. 120, no. 10, pp. 3688–3701, 2010. View at Publisher · View at Google Scholar
  22. S. Li, M. Rodrigues, D. Rodriguez et al., “Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 11, pp. 5214–5218, 1993. View at Google Scholar · View at Scopus
  23. M. Rodrigues, S. Li, K. Murata et al., “Influenza and vaccinia viruses expressing malaria CD8+ T and B cell epitopes: comparison of their immunogenicity and capacity to induce protective immunity,” Journal of Immunology, vol. 153, no. 10, pp. 4636–4648, 1994. View at Google Scholar · View at Scopus
  24. M. Sedegah, T. R. Jones, M. Kaur et al., “Boosting with recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA vaccine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7648–7653, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Schneider, S. C. Gilbert, T. J. Blanchard et al., “Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara,” Nature Medicine, vol. 4, no. 4, pp. 397–402, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. D. P. Webster, S. Dunachie, J. M. Vuola et al., “Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 13, pp. 4836–4841, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Dunachie, M. Walther, J. E. Epstein et al., “A DNA prime-modified vaccinia virus Ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge,” Infection and Immunity, vol. 74, no. 10, pp. 5933–5942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Bejon, E. Ogada, T. Mwangi et al., “Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya,” PLoS ONE, vol. 2, no. 8, article e707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. W. Schmidt, R. L. Podyminogin, N. S. Butler et al., “Memory CD8+ T cell responses exceeding a large but definable threshold provide long-term immunity to malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14017–14022, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Rodrigues, R. S. Nussenzweig, P. Romero, and F. Zavala, “The in vivo cytotoxic activity of CD8+ T cell clones correlates with their levels of expression of adhesion molecules,” Journal of Experimental Medicine, vol. 175, no. 4, pp. 895–905, 1992. View at Google Scholar · View at Scopus
  31. J. Cohen, V. Nussenzweig, R. Nussenzweig, J. Vekemans, and A. Leach, “From the circumsporozoite protein to the RTS,S/AS candidate vaccine,” Human Vaccines, vol. 6, no. 1, pp. 90–96, 2010. View at Google Scholar · View at Scopus
  32. K. E. Kester, J. F. Cummings, O. Ofori-Anyinam et al., “Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection,” Journal of Infectious Diseases, vol. 200, no. 3, pp. 337–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Bejon, J. Lusingu, A. Olotu et al., “Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age,” New England Journal of Medicine, vol. 359, no. 24, pp. 2521–2532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Abdulla, R. Oberholzer, O. Juma et al., “Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants,” New England Journal of Medicine, vol. 359, no. 24, pp. 2533–2544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Gamain, J. D. Smith, N. K. Viebig, J. Gysin, and A. Scherf, “Pregnancy-associated malaria: parasite binding, natural immunity and vaccine development,” International Journal for Parasitology, vol. 37, no. 3-4, pp. 273–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Wipasa and E. M. Riley, “The immunological challenges of malaria vaccine development,” Expert Opinion on Biological Therapy, vol. 7, no. 12, pp. 1841–1852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Genton and Z. H. Reed, “Asexual blood-stage malaria vaccine development: facing the challenges,” Current Opinion in Infectious Diseases, vol. 20, no. 5, pp. 467–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Hviid, “The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development,” Human Vaccines, vol. 6, no. 1, pp. 84–89, 2010. View at Google Scholar · View at Scopus
  39. M. Dahlbäck, M. A. Nielsen, and A. Salanti, “Can any lessons be learned from the ambiguous glycan binding of PfEMP1 domains?” Trends in Parasitology, vol. 26, no. 5, pp. 230–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Khunrae, M. Dahlbäck, M. A. Nielsen et al., “Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies,” Journal of Molecular Biology, vol. 397, no. 3, pp. 826–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. H. Reed, M. Friede, and M. P. Kieny, “Malaria vaccine development: progress and challenges,” Current Molecular Medicine, vol. 6, no. 2, pp. 231–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. S. Yazdani, P. Mukherjee, V. S. Chauhan, and C. E. Chitnis, “Immune responses to asexual blood-stages of malaria parasites,” Current Molecular Medicine, vol. 6, no. 2, pp. 187–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Langhorne, F. M. Ndungu, A. M. Sponaas, and K. Marsh, “Immunity to malaria: more questions than answers,” Nature Immunology, vol. 9, no. 7, pp. 725–732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Kadekoppala and A. A. Holder, “Merozoite surface proteins of the malaria parasite: the MSP1 complex and the MSP7 family,” International Journal for Parasitology, vol. 40, no. 10, pp. 1155–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. J. Remarque, B. W. Faber, C. H. M. Kocken, and A. W. Thomas, “Apical membrane antigen 1: a malaria vaccine candidate in review,” Trends in Parasitology, vol. 24, no. 2, pp. 74–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. C. E. Chitnis and A. Sharma, “Targeting the Plasmodium vivax Duffy-binding protein,” Trends in Parasitology, vol. 24, no. 1, pp. 29–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Brown and M. K. Higgins, “Carbohydrate binding molecules in malaria pathology,” Current Opinion in Structural Biology, vol. 20, no. 5, pp. 560–566, 2010. View at Publisher · View at Google Scholar
  48. J. J. Babon, W. D. Morgan, G. Kelly, J. F. Eccleston, J. Feeney, and A. A. Holder, “Structural studies on Plasmodium vivax merozoite surface protein-1,” Molecular and Biochemical Parasitology, vol. 153, no. 1, pp. 31–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. R. A. O'Donnell, A. Saul, A. F. Cowman, and B. S. Crabb, “Functional conservation of the malaria vaccine antigen MSP-1 across distantly related Plasmodium species,” Nature Medicine, vol. 6, no. 1, pp. 91–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. P. R. Sanders, L. M. Kats, D. R. Drew et al., “A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion,” Infection and Immunity, vol. 74, no. 7, pp. 4330–4338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Combe, D. Giovannini, T. G. Carvalho et al., “Clonal conditional mutagenesis in malaria parasites,” Cell Host and Microbe, vol. 5, no. 4, pp. 386–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. T. M. Daly and C. A. Long, “A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice,” Infection and Immunity, vol. 61, no. 6, pp. 2462–2467, 1993. View at Google Scholar · View at Scopus
  53. T. M. Daly and C. A. Long, “Influence of adjuvants on protection induced by a recombinant fusion protein against malarial infection,” Infection and Immunity, vol. 64, no. 7, pp. 2602–2608, 1996. View at Google Scholar · View at Scopus
  54. B. Singh, M. Cabrera-Mora, J. Jiang, M. Galinski, and A. Moreno, “Genetic linkage of autologous T cell epitopes in a chimeric recombinant construct improves anti-parasite and anti-disease protective effect of a malaria vaccine candidate,” Vaccine, vol. 28, no. 14, pp. 2580–2592, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. K. L. R. L. Perera, S. M. Handunnetti, I. Holm, S. Longacre, and K. Mendis, “Baculovirus merozoite surface protein 1 C-terminal recombinant antigens are highly protective in a natural primate model for human plasmodium vivax malaria,” Infection and Immunity, vol. 66, no. 4, pp. 1500–1506, 1998. View at Google Scholar · View at Scopus
  56. J. A. Lyon, E. Angov, M. P. Fay et al., “Protection induced by plasmodium falciparum MSP1 is strain-specific, antigen and adjuvant dependent, and correlates with antibody responses,” PLoS ONE, vol. 3, no. 7, article e2830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. B. R. Ogutu, O. J. Apollo, D. McKinney et al., “Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya,” PLoS ONE, vol. 4, no. 3, article e4708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. H. Reed, M. P. Kieny, H. Engers et al., “Comparison of immunogenicity of five MSP1-based malaria vaccine candidate antigens in rabbits,” Vaccine, vol. 27, no. 10, pp. 1651–1660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. H. C. Ramos, M. Rumbo, and J. C. Sirard, “Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa,” Trends in Microbiology, vol. 12, no. 11, pp. 509–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Hayashi, K. D. Smith, A. Ozinsky et al., “The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5,” Nature, vol. 410, no. 6832, pp. 1099–1103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. K. D. Smith, E. Andersen-Nissen, F. Hayashi et al., “Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility,” Nature Immunology, vol. 4, no. 12, pp. 1247–1253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. T. K. Means, F. Hayashi, K. D. Smith, A. Aderem, and A. D. Luster, “The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells,” Journal of Immunology, vol. 170, no. 10, pp. 5165–5175, 2003. View at Google Scholar · View at Scopus
  63. S. Arimilli, J. B. Johnson, K. M. Clark et al., “Engineered expression of the TLR5 ligand flagellin enhances paramyxovirus activation of human dendritic cell function,” Journal of Virology, vol. 82, no. 22, pp. 10975–10985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Merlo, C. Calcaterra, S. Ménard, and A. Balsari, “Cross-talk between Toll-like receptors 5 and 9 on activation of human immune responses,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 509–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Agrawal, A. Agrawal, B. Doughty et al., “Cutting Edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos,” Journal of Immunology, vol. 171, no. 10, pp. 4984–4989, 2003. View at Google Scholar · View at Scopus
  66. A. Didierlaurent, I. Ferrero, L. A. Otten et al., “Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response,” Journal of Immunology, vol. 172, no. 11, pp. 6922–6930, 2004. View at Google Scholar · View at Scopus
  67. J. T. Bates, S. Uematsu, S. Akira, and S. B. Mizel, “Direct stimulation of tlr5+/+ CD11c+ cells is necessary for the adjuvant activity of flagellin,” Journal of Immunology, vol. 182, no. 12, pp. 7539–7547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. E. A. Miao, C. M. Alpuche-Aranda, M. Dors et al., “Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf,” Nature Immunology, vol. 7, no. 6, pp. 569–575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. K. L. Lightfield, J. Persson, S. W. Brubaker et al., “Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin,” Nature Immunology, vol. 9, no. 10, pp. 1171–1178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. D. S. Zamboni, K. S. Kobayashi, T. Kohlsdorf et al., “The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection,” Nature Immunology, vol. 7, no. 3, pp. 318–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Vinzing, J. Eitel, J. Lippmann et al., “NAIP and Ipaf control Legionella pneumophila replication in human cells,” Journal of Immunology, vol. 180, no. 10, pp. 6808–6815, 2008. View at Google Scholar · View at Scopus
  72. C. L. Buzzo, J. C. Campopiano, L. M. Massis et al., “A novel pathway for inducible nitric-oxide synthase activation through inflammasomes,” Journal of Biological Chemistry, vol. 285, no. 42, pp. 32087–32095, 2010. View at Publisher · View at Google Scholar
  73. K. R. Bortoluci and R. Medzhitov, “Control of infection by pyroptosis and autophagy: role of TLR and NLR,” Cellular and Molecular Life Sciences, vol. 67, no. 10, pp. 1643–1651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. S. M. C. Newton, C. O. Jacob, and B. A. D. Stocker, “Immune response to cholera toxin epitope inserted in Salmonella flagellin,” Science, vol. 244, no. 4900, pp. 70–72, 1989. View at Google Scholar · View at Scopus
  75. J. McEwen, R. Levi, R. J. Horwitz, and R. Arnon, “Synthetic recombinant vaccine expressing influenza haemagluttinin epitope in Salmonella flagellin leads to partial protection in mice,” Vaccine, vol. 10, no. 6, pp. 405–411, 1992. View at Publisher · View at Google Scholar · View at Scopus
  76. M. G. Luna, M. M. Martins, S. M. C. Newton, S. O. P. Costa, D. F. Almeida, and L. C. S. Ferreira, “Cloning and expression of colonization factor antigen I (CFA/I) epitopes of enterotogenic Escherichia coli (ETEC) in Salmonella flagellin,” Research in Microbiology, vol. 148, no. 3, pp. 217–228, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. S. B. Mizel and J. T. Bates, “Flagellin as an adjuvant: cellular mechanisms and potential,” Journal of Immunology, vol. 185, no. 10, pp. 5677–5682, 2010. View at Publisher · View at Google Scholar
  78. J. W. Huleatt, V. Nakaar, P. Desai et al., “Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin,” Vaccine, vol. 26, no. 2, pp. 201–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Song, V. Nakaar, U. Kavita et al., “Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs,” PLoS ONE, vol. 3, no. 5, article e2257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. J. J. Treanor, D. N. Taylor, L. Tussey et al., “Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults,” Vaccine, vol. 28, no. 52, pp. 8268–8274, 2010. View at Publisher · View at Google Scholar
  81. M. B. Barbedo, R. Ricci, M. C. S. Jimenez et al., “Comparative recognition by human IgG antibodies of recombinant proteins representing three asexual erythrocytic stage vaccine candidates of Plasmodium vivax,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 3, pp. 335–339, 2007. View at Google Scholar · View at Scopus
  82. I. S. Soares, J. W. Barnwell, M. U. Ferreira et al., “A Plasmodium vivax vaccine candidate displays limited allele polymorphism, which does not restrict recognition by antibodies,” Molecular Medicine, vol. 5, no. 7, pp. 459–470, 1999. View at Google Scholar
  83. M. H. C. Rodrigues, M. G. Cunha, R. L. D. Machado, O. C. Ferreira, M. M. Rodrigues, and I. S. Soares, “Serological detection of Plasmodium vivax malaria using recombinant proteins corresponding to the 19-kDa C-terminal region of the merozoite surface protein-1,” Malaria Journal, vol. 2, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Dutta, D. C. Kaushal, L. A. Ware et al., “Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys,” Infection and Immunity, vol. 73, no. 9, pp. 5936–5944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Y. Bargieri, D. S. Rosa, C. J. M. Braga et al., “New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin,” Vaccine, vol. 26, no. 48, pp. 6132–6142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Y. Bargieri, J. A. Leite, S. C. P. Lopes et al., “Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella Typhimurium,” Vaccine, vol. 28, no. 16, pp. 2818–2826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. C. J. M. Braga, L. M. Massis, M. E. Sbrogio-Almeida et al., “CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein,” Vaccine, vol. 28, no. 5, pp. 1373–1382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. O. Pino, M. Martin, and S. M. Michalek, “Cellular mechanisms of the adjuvant activity of the flagellin component FljB of Salmonella enterica serovar typhimurium to potentiate mucosal and systemic responses,” Infection and Immunity, vol. 73, no. 10, pp. 6763–6770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. S. K. Datta, V. Redecke, K. R. Prilliman et al., “A subset of toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells,” Journal of Immunology, vol. 170, no. 8, pp. 4102–4110, 2003. View at Google Scholar · View at Scopus
  90. I. Vicente-Suarez, J. Brayer, A. Villagra, F. Cheng, and E. M. Sotomayor, “TLR5 ligation by flagellin converts tolerogenic dendritic cells into activating antigen-presenting cells that preferentially induce T-helper 1 responses,” Immunology Letters, vol. 125, no. 2, pp. 114–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. C. J. Sanders, L. Franchi, F. Yarovinsky et al., “Induction of adaptive immunity by flagellin does not require robust activation of innate immunity,” European Journal of Immunology, vol. 39, no. 2, pp. 359–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Vijay-Kumar, F. A. Carvalho, J. D. Aitken, N. H. Fifadara, and A. T. Gewirtz, “TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin,” European Journal of Immunology, vol. 40, no. 12, pp. 3528–3534, 2010. View at Publisher · View at Google Scholar