Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2012 (2012), Article ID 852591, 11 pages
http://dx.doi.org/10.1155/2012/852591
Review Article

Comparison of Protective Immune Responses to Apicomplexan Parasites

1The ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
2Institute of Zoology, Technical University Dresden, Mommsenstraße 13, 01062 Dresden, Germany

Received 9 May 2011; Accepted 27 June 2011

Academic Editor: Hugo D. Lujan

Copyright © 2012 Sonja Frölich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Guerra, R. W. Snow, and S. I. Hay, “Mapping the global extent of malaria in 2005,” Trends in Parasitology, vol. 22, no. 8, pp. 353–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. M. Tomley and M. W. Shirley, “Livestock infectious diseases and zoonoses,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1530, pp. 2637–2642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. W. Shirley, A. L. Smith, and F. M. Tomley, “The biology of avian Eimeria with an emphasis on their control by vaccination,” in Advances in Parasitology, vol. 60, pp. 285–330, Elsevier Academic Press, San Diego, Calif, USA, 2005. View at Google Scholar
  4. G. H. Coombs and S. Müller, “Recent advances in the search for new anti-coccidial drugs,” International Journal for Parasitology, vol. 32, no. 5, pp. 497–508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. C. Allen, H. D. Danforth, and P. C. Augustine, “Dietary modulation of avian coccidiosis,” International Journal for Parasitology, vol. 28, no. 7, pp. 1131–1140, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Allen, J. Lydon, and H. D. Danforth, “Effects of components of Artemisia annua on coccidia infections in chickens,” Poultry Science, vol. 76, no. 8, pp. 1156–1163, 1997. View at Google Scholar · View at Scopus
  7. E. del Cacho, M. Gallego, M. Francesch, J. Quílez, and C. Sánchez-Acedo, “Effect of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection,” Parasitology International, vol. 59, no. 4, pp. 506–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Graves and H. Gelband, “Vaccines for preventing malaria,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD000129, 2003. View at Google Scholar · View at Scopus
  9. P. Graves and H. Gelband, “Vaccines for preventing malaria (SPf66),” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005966, 2006. View at Google Scholar · View at Scopus
  10. P. Graves and H. Gelband, “Vaccines for preventing malaria (pre-erythrocytic),” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006198, 2006. View at Google Scholar · View at Scopus
  11. P. Graves and H. Gelband, “Vaccines for preventing malaria (blood-stage),” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006199, 2006. View at Google Scholar · View at Scopus
  12. K. Miura, D. B. Keister, O. V. Muratova, J. Sattabongkot, C. A. Long, and A. Saul, “Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer,” Malaria Journal, vol. 6, article no. 107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. B. Williams, “Fifty years of anticoccidial vaccines for poultry (1952-2002),” Avian Diseases, vol. 46, no. 4, pp. 775–802, 2002. View at Google Scholar · View at Scopus
  14. D. T. de Waal and M. P. Combrink, “Live vaccines against bovine babesiosis,” Veterinary Parasitology, vol. 138, no. 1-2, pp. 88–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. Bhopale, “Development of a vaccine for toxoplasmosis: current status,” Microbes and Infection, vol. 5, no. 5, pp. 457–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kur, L. Holec-Gasior, and E. Hiszczynska-Sawicka, “Current status of toxoplasmosis vaccine development,” Expert Review of Vaccines, vol. 8, no. 6, pp. 791–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. C. de Graaf, F. Spano, F. Petry, S. Sagodira, and A. Bonnin, “Speculation on whether a vaccine against cryptosporidiosis is a reality or fantasy,” International Journal for Parasitology, vol. 29, no. 8, pp. 1289–1306, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. N. C. Smith, M. Wallach, C. M. D. Miller, R. Braun, and J. Eckert, “Maternal transmission of immunity to Eimeria maxima: western blot analysis of protective antibodies induced by infection,” Infection and Immunity, vol. 62, no. 11, pp. 4811–4817, 1994. View at Google Scholar · View at Scopus
  19. N. C. Smith, M. Wallach, C. M. D. Miller, R. Morgenstern, R. Braun, and J. Eckert, “Maternal transmission of immunity to Eimeria maxima: enzyme-linked immunosorbent assay analysis of protective antibodies induced by infection,” Infection and Immunity, vol. 62, no. 4, pp. 1348–1357, 1994. View at Google Scholar · View at Scopus
  20. M. Wallach, N. C. Smith, M. Petracca, C. M. D. Miller, J. Eckert, and R. Braun, “Eimeria maxima gametocyte antigens: potential use in a subunit maternal vaccine against coccidiosis in chickens,” Vaccine, vol. 13, no. 4, pp. 347–354, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. M. G. Wallach, U. Ashash, A. Michael, and N. C. Smith, “Field application of a subunit vaccine against an enteric protozoan disease,” PLoS One, vol. 3, no. 12, Article ID e3948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. I. Belli, R. A. Walker, and S. A. Flowers, “Global protein expression analysis in apicomplexan parasites: current status,” Proteomics, vol. 5, no. 4, pp. 918–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. I. A. Clark and A. C. Allison, “Babesia microti, and Plasmodium berghei yoelii infections in nude mice,” Nature, vol. 252, no. 5481, pp. 328–329, 1974. View at Google Scholar · View at Scopus
  24. H. D. Danforth, “Use of monoclonal antibodies directed against Eimeria tenella sporozoites to determine stage specificity and in vitro effect on parasite penetration and development,” American Journal of Veterinary Research, vol. 44, no. 9, pp. 1722–1727, 1983. View at Google Scholar · View at Scopus
  25. D. M. Hammond, “Life cycles and development of of coccidia,” in The Coccidia. Eimeria, Isospora, Toxoplasma and Related Genera, D. M. Hammonds and P. L. Long, Eds., pp. 45–79, University Park Press, 1973. View at Google Scholar
  26. M. E. Rose, “Immunity to eimeria infections,” Veterinary Immunology and Immunopathology, vol. 17, no. 1–4, pp. 333–343, 1987. View at Google Scholar · View at Scopus
  27. M. E. Rose and P. Hesketh, “Immunity to coccidiosis: stages of the life cycle of Eimeria maxima which induce, and are affected by, the response of the host,” Parasitology, vol. 73, no. 1, pp. 25–37, 1976. View at Google Scholar · View at Scopus
  28. K. Artavanis-Tsakonas, J. E. Tongren, and E. M. Riley, “The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology,” Clinical and Experimental Immunology, vol. 133, no. 2, pp. 145–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Scholtyseck, H. Mehlhorn, and D. M. Hammond, “Fine structure of macrogametes and oocysts of coccidia and related organisms,” Zeitschrift für Parasitenkunde, vol. 37, no. 1, pp. 1–43, 1971. View at Publisher · View at Google Scholar · View at Scopus
  30. T. G. Smith, D. Walliker, and L. C. Ranford-Cartwright, “Sexual differentiation and sex determination in the Apicomplexa,” Trends in Parasitology, vol. 18, no. 7, pp. 315–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Tomley, “Techniques for isolation and characterization of apical organelles from Eimeria tenella sporozoites,” Methods: A Companion to Methods in Enzymology, vol. 13, no. 2, pp. 171–176, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Wallach, “The importance of transmission-blocking immunity in the control of infections by apicomplexan parasites,” International Journal for Parasitology, vol. 27, no. 10, pp. 1159–1167, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. T. J. Templeton, “Whole-genome natural histories of apicomplexan surface proteins,” Trends in Parasitology, vol. 23, no. 5, pp. 205–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Soldati, B. J. Foth, and A. F. Cowman, “Molecular and functional aspects of parasite invasion,” Trends in Parasitology, vol. 20, no. 12, pp. 567–574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Dobbelaere and V. Heussler, “Transformation of leukocytes by Theileria parva and T. annulata,” Annual Review of Microbiology, vol. 53, pp. 1–42, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Janouškovec, A. Horák, M. Oborník, J. Lukeš, and P. J. Keeling, “A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 24, pp. 10949–10954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Sato, “The apicomplexan plastid and its evolution,” Cellular and Molecular Life Sciences, vol. 68, no. 8, pp. 1285–1296, 2011. View at Publisher · View at Google Scholar
  38. G. I. McFadden and G. G. Van Dooren, “Evolution: red algal genome affirms a common origin of all plastids,” Current Biology, vol. 14, no. 13, pp. R514–R516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. S. A. West, S. E. Reece, and A. F. Read, “Toxoplasma gondii, sex and premature rejection,” Trends in Parasitology, vol. 19, no. 4, pp. 155–157, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. A. West, T. G. Smith, and A. F. Read, “Sex allocation and population structure in apicomplexan (protozoa) parasites,” Proceedings of the Royal Society B, vol. 267, no. 1440, pp. 257–263, 2000. View at Google Scholar · View at Scopus
  41. D. J. P. Ferguson, N. Sahoo, R. A. Pinches, J. M. Bumstead, F. M. Tomley, and M. J. Gubbels, “MORN1 has a conserved role in asexual and sexual development across the Apicomplexa,” Eukaryotic Cell, vol. 7, no. 4, pp. 698–711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. K. Moreira, T. J. Templeton, C. Lavazec et al., “The Plasmodium TRAP/MIC2 family member, TRAP-Like Protein (TLP), is involved in tissue traversal by sporozoites,” Cellular Microbiology, vol. 10, no. 7, pp. 1505–1516, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. D. M. Witcombe, S. I. Belli, M. G. Wallach, and N. C. Smith, “Molecular characterisation of EmTFP250: a novel member of the TRAP protein family in Eimeria maxima,” International Journal for Parasitology, vol. 33, no. 7, pp. 691–702, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. F. Cowman and B. S. Crabb, “Invasion of red blood cells by malaria parasites,” Cell, vol. 124, no. 4, pp. 755–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Brinkmann, J. S. Remington, and S. D. Sharma, “Vaccination of mice with the protective F3G3 antigen of Toxoplasma gondii activates CD4+ but not CD8+ T cells and induced Toxoplasma specific IgG antibody,” Molecular Immunology, vol. 30, no. 4, pp. 353–358, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. S. D. Sharma, F. G. Araujo, and J. S. Remington, “Toxoplasma antigen isolated by affinity chromatography with monoclonal antibody protects mice against lethal infection with Toxoplasma gondii,” Journal of Immunology, vol. 133, no. 6, pp. 2818–2820, 1984. View at Google Scholar · View at Scopus
  47. A. E. Dent et al., “Impact of prenatal exposure to malaria antigens on levels of MSP-1(19) invasion-inhibitory antibodies during infancy,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 6, p. 866, 2005. View at Google Scholar
  48. D. M. Witcombe, D. J. P. Ferguson, S. I. Belli, M. G. Wallach, and N. C. Smith, “Eimeria maxima TRAP family protein EmTFP250: subcellular localisation and induction of immune responses by immunisation with a recombinant C-terminal derivative,” International Journal for Parasitology, vol. 34, no. 7, pp. 861–872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Sturm, R. Amino, C. van de Sand et al., “Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids,” Science, vol. 313, no. 5791, pp. 1287–1290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Sturm and V. Heussler, “Live and let die: manipulation of host hepatocytes by exoerythrocytic Plasmodium parasites,” Medical Microbiology and Immunology, vol. 196, no. 3, pp. 127–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. E. Morgan, K. M. Evans, S. Patterson, F. Catti, G. E. Ward, and N. J. Westwood, “Targeting invasion and egress: from tools to drugs?” Current Drug Targets, vol. 8, no. 1, pp. 61–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Mai, P. A. Sharman, R. A. Walker et al., “Oocyst wall formation and composition in coccidian parasites,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 281–289, 2009. View at Google Scholar · View at Scopus
  53. D. J. P. Ferguson, S. I. Belli, N. C. Smith, and M. G. Wallach, “The development of the macrogamete and oocyst wall in Eimeria maxima: immuno-light and electron microscopy,” International Journal for Parasitology, vol. 33, no. 12, pp. 1329–1340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. D. J. P. Ferguson, W. M. Hutchison, and J. C. Siim, “The ultrastructural development of the macrogamete and formation of the oocyst wall of Toxoplasma gondii,” Acta Pathologica et Microbiologica Scandinavica Section B, vol. 83, no. 5, pp. 491–505, 1975. View at Google Scholar · View at Scopus
  55. D. J. P. Ferguson, A. Birch Andersen, W. M. Hutchison, and J. C. Siim, “Ultrastructural studies on the endogenous development of Eimeria brunetti. III. Macrogametogony and the macrogamete,” Acta Pathologica et Microbiologica Scandinavica Section B, vol. 85, no. 1, pp. 78–88, 1977. View at Google Scholar · View at Scopus
  56. M. Fried, D. Mencher, O. Sar-Shalom, and M. Wallach, “Developmental gene expression of a 230-kilodalton macrogamete-specific protein of the avian coccidial parasite, Eimeria maxima,” Molecular and Biochemical Parasitology, vol. 51, no. 2, pp. 251–262, 1992. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Meeusen, S. Lloyd, and E. J. L. Soulsby, “Babesia microti in mice. Adoptive transfer of immunity with serum and cells,” Australian Journal of Experimental Biology and Medical Science, vol. 62, no. 5, pp. 551–566, 1984. View at Google Scholar · View at Scopus
  58. M. Akiba, H. Saeki, T. Ishii, S. Yamamoto, and K. Ueda, “Immunological changes in Babesia rodhaini infected BALB/c mice after treated with anti-babesial drug; diminazene diaceturate,” The Journal of Veterinary Medical Science, vol. 53, no. 3, pp. 371–377, 1991. View at Google Scholar
  59. K. Artavanis-Tsakonas and E. M. Riley, “Innate immune response to malaria: rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum-infected erythrocytes,” Journal of Immunology, vol. 169, no. 6, pp. 2956–2963, 2002. View at Google Scholar · View at Scopus
  60. F. Laurent, D. McCole, L. Eckmann, and M. F. Kagnoff, “Pathogenesis of Cryptosporidium parvum infection,” Microbes and Infection, vol. 1, no. 2, pp. 141–148, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. M. M. Nelson, A. R. Jones, J. C. Carmen, A. P. Sinai, R. Burchmore, and J. M. Wastling, “Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii,” Infection and Immunity, vol. 76, no. 2, pp. 828–844, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Igarashi, R. Suzuki, S. Waki et al., “Roles of CD4+ T cells and gamma interferon in protective immunity against Babesia microti infection in mice,” Infection and Immunity, vol. 67, no. 8, pp. 4143–4148, 1999. View at Google Scholar · View at Scopus
  63. I. Aguilar-Delfin, P. J. Wettstein, and D. H. Persing, “Resistance to acute babesiosis is associated with interleukin-12- and gamma interferon-mediated responses and requires macrophages and natural killer cells,” Infection and Immunity, vol. 71, no. 4, pp. 2002–2008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. D. L. Doolan and N. Martinez-Alier, “Immune response to pre-erythrocytic stages of malaria parasites,” Current Molecular Medicine, vol. 6, no. 2, pp. 169–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. R. E. Molestina, T. M. Payne, I. Coppens, and A. P. Sinai, “Activation of NF-κB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IκB to the parasitophorous vacuole membrane,” Journal of Cell Science, vol. 116, no. 21, pp. 4359–4371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Lang, M. Algner, N. Beinert, U. Groß, and C. G. K. Lüder, “Diverse mechanisms employed by Toxoplasma gondii to inhibit IFN-γ-induced major histocompatibility complex class II gene expression,” Microbes and Infection, vol. 8, no. 8, pp. 1994–2005, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. I. Igarashi et al., “Role of CD4+ T cells in the control of primary infection with Babesia microti in mice,” Journal of Protozoology Research, vol. 4, no. 4, pp. 164–171, 1994. View at Google Scholar
  68. J. Matsubara, M. Koura, and T. Kamiyama, “Infection of immunodeficient mice with a mouse-adapted substrain of the gray strain of Babesia microti,” Journal of Parasitology, vol. 79, no. 5, pp. 783–786, 1993. View at Publisher · View at Google Scholar · View at Scopus
  69. H. S. Lillehoj and J. M. Trout, “CD8+ T cell-Coccidia interactions,” Parasitology Today, vol. 10, no. 1, pp. 10–14, 1994. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Trout and H. S. Lillehoj, “T lymphocyte roles during Eimeria acervulina and Eimeria tenella infections,” Veterinary Immunology and Immunopathology, vol. 53, no. 1-2, pp. 163–172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  71. H. S. Lillehoj and J. M. Trout, “Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites,” Clinical Microbiology Reviews, vol. 9, no. 3, pp. 349–360, 1996. View at Google Scholar · View at Scopus
  72. J. M. Trout and H. S. Litlehoj, “Evidence of a role for intestinal CD8+ lymphocytes and macrophages in transport of Eimeria acervulina sporozoites,” Journal of Parasitology, vol. 79, no. 5, pp. 790–792, 1993. View at Publisher · View at Google Scholar · View at Scopus
  73. J. M. Trout and H. S. Lillehoj, “Eimeria acervulina infection: evidence for the involvement of CD8+ T lymphocytes in sporozoite transport and host protection,” Poultry science, vol. 74, no. 7, pp. 1117–1125, 1995. View at Google Scholar · View at Scopus
  74. G. M. Jeffery, “Epidemiological significance of repeated infections with homologous and heterologous strains and species of Plasmodium,” Bulletin of the World Health Organization, vol. 35, no. 6, pp. 873–882, 1966. View at Google Scholar · View at Scopus
  75. D. L. Doolan, C. Dobaño, and J. K. Baird, “Acquired immunity to Malaria,” Clinical Microbiology Reviews, vol. 22, no. 1, pp. 13–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. D. A. E. Dobbelaere and S. Rottenberg, “Theileria-induced leukocyte transformation,” Current Opinion in Microbiology, vol. 6, no. 4, pp. 377–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Lacroix-Lamandé, R. Mancassola, M. Naciri, and F. Laurent, “Role of gamma interferon in chemokine expression in the ileum of mice and in a murine intestinal epithelial cell line after Cryptosporidium parvum infection,” Infection and Immunity, vol. 70, no. 4, pp. 2090–2099, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Walliker, “Malaria parasites: randomly interbreeding or 'clonal' populations?” Parasitology Today, vol. 7, no. 9, pp. 232–235, 1991. View at Google Scholar · View at Scopus
  79. A. E. Dent, E. S. Bergmann-Leitner, D. W. Wilson et al., “Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults,” PLoS One, vol. 3, no. 10, Article ID e3557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. B. Al-Khedery and D. R. Allred, “Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription,” Molecular Microbiology, vol. 59, no. 2, pp. 402–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. D. R. Allred, “Antigenic variation in Babesia bovis: how similar is it to that in Plasmodium falciparum?” Annals of Tropical Medicine and Parasitology, vol. 92, no. 4, pp. 461–472, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Hommel, P. H. David, and L. D. Oligino, “Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen,” Journal of Experimental Medicine, vol. 157, no. 4, pp. 1137–1148, 1983. View at Google Scholar · View at Scopus
  83. J. D. Smith, C. E. Chitnis, A. G. Craig et al., “Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes,” Cell, vol. 82, no. 1, pp. 101–110, 1995. View at Google Scholar · View at Scopus
  84. X. Z. Su, V. M. Heatwole, S. P. Wertheimer et al., “The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes,” Cell, vol. 82, no. 1, pp. 89–100, 1995. View at Google Scholar · View at Scopus
  85. R. M. O'Connor, T. J. Lane, S. E. Stroup, and D. R. Allred, “Characterization of a variant erythrocyte surface antigen (VESA1) expressed by Babesia bovis during antigenic variation,” Molecular and Biochemical Parasitology, vol. 89, no. 2, pp. 259–270, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. J. A. Guevara Patiño, A. A. Holder, J. S. McBride, and M. J. Blackman, “Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies,” Journal of Experimental Medicine, vol. 186, no. 10, pp. 1689–1699, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. S. M. Kinyanjui, T. Mwangi, P. C. Bull, C. I. Newbold, and K. Marsh, “Protection against clinical malaria by heterologous immunoglobulin G antibodies against malaria-infected erythrocyte variant surface antigens requires interaction with asymptomatic infections,” Journal of Infectious Diseases, vol. 190, no. 9, pp. 1527–1533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. A. E. Dent, K. Chelimo, P. O. Sumba et al., “Temporal stability of naturally acquired immunity to merozoite surfacep protein-1 in kenyan adults,” Malaria Journal, vol. 8, no. 1, article no. 162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. D. F. Mahoney, “Bovine babesiosis: the passive immunization of calves against Babesia argentina with special reference to the role of complement fixing antibodies,” Experimental Parasitology, vol. 20, no. 1, pp. 119–124, 1967. View at Google Scholar · View at Scopus
  90. B. Hogh, “Clinical and parasitological studies on immunity to Plasmodium falciparum malaria in children,” Scandinavian Journal of Infectious Diseases, Supplement, no. 102, pp. 1–53, 1996. View at Google Scholar
  91. J. R. Mineo, R. McLeod, D. Mack et al., “Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and are produced in murine intestine after peroral infection,” Journal of Immunology, vol. 150, no. 9, pp. 3951–3964, 1993. View at Google Scholar · View at Scopus
  92. E. Precigout, A. Valentin, B. Carcy et al., “Babesia divergens: characterization of a 17-kDa merozoite membrane protein,” Experimental Parasitology, vol. 77, no. 4, pp. 425–434, 1993. View at Publisher · View at Google Scholar · View at Scopus
  93. M. E. Rose, “Immunity to coccidiosis: maternal transfer in Eimeria maxima infections,” Parasitology, vol. 65, no. 2, pp. 273–282, 1972. View at Google Scholar · View at Scopus
  94. M. E. Rose, P. Hesketh, R. K. Grencis, and A. J. Bancroft, “Vaccination against coccidiosis: host strain-dependent evocation of protective and suppressive subsets of murine lymphocytes,” Parasite Immunology, vol. 22, no. 4, pp. 161–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Hui and C. Hashimoto, “Plasmodium falciparum anti-MSP1-19 antibodies induced by MSP1-42 and MSP1-19 based vaccines differed in specificity and parasite growth inhibition in terms of recognition of conserved versus variant epitopes,” Vaccine, vol. 25, no. 5, pp. 948–956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. C. W. Kauth, C. Epp, H. Bujard, and R. Lutz, “The merozoite surface protein 1 complex of human malaria parasite Plasmodium falciparum: interactions and arrangements of subunits,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22257–22264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. S. R. Elliott, P. D. Payne, M. F. Duffy et al., “Antibody recognition of heterologous variant surface antigens after a single Plasmodium falciparum infection in previously naïve adults,” American Journal of Tropical Medicine and Hygiene, vol. 76, no. 5, pp. 860–864, 2007. View at Google Scholar · View at Scopus
  98. O. O. Kassim, K. A. Ako-Anai, S. E. Torimiro, G. P. Hollowell, V. C. Okoye, and S. K. Martin, “Inhibitory factors in breastmilk, maternal and infant sera against in vitro growth of Plasmodium falciparum malaria parasite,” Journal of Tropical Pediatrics, vol. 46, no. 2, pp. 92–96, 2000. View at Google Scholar · View at Scopus
  99. K. Broen, K. Brustoski, I. Engelmann, and A. J. F. Luty, “Placental Plasmodium falciparum infection: causes and consequences of in utero sensitization to parasite antigens,” Molecular and Biochemical Parasitology, vol. 151, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. D. P. Blake, K. J. Billington, S. L. Copestake et al., “Genetic mapping identifies novel highly protective antigens for an apicomplexan parasite,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001279, 2011. View at Publisher · View at Google Scholar
  101. J. Krücken, R. J. Hosse, A. N. Mouafo et al., “Excystation of Eimeria tenella sporozoites impaired by antibody recognizing gametocyte/oocyst antigens GAM22 and GAM56,” Eukaryotic Cell, vol. 7, no. 2, pp. 202–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. M. G. Wallach, D. Mencher, S. Yarus, G. Pillemer, A. Halabi, and T. Pugatsch, “Eimeria maxima: identification of gametocyte protein antigens,” Experimental Parasitology, vol. 68, no. 1, pp. 49–56, 1989. View at Google Scholar · View at Scopus
  103. C. G. Huff and D. F. Marchbank, “Changes in infectiousness of malarial gametocytes. I. Patterns of oocyst production in seven host-parasite combinations,” Experimental Parasitology, vol. 4, no. 3, pp. 256–270, 1955. View at Google Scholar
  104. C. G. Huff, D. F. Marchbank, and T. Shiroishi, “Changes in infectiousness of malarial gametocytes. II. Analysis of the possible causative factors,” Experimental Parasitology, vol. 7, no. 4, pp. 399–417, 1958. View at Google Scholar
  105. D. C. Kaslow, I. C. Bathurst, S. N. Isaacs, D. B. Keister, B. Moss, and P. J. Barr, “Induction of Plasmodium falciparum transmission-blocking antibodies by recombinant Pfs25,” Memorias do Instituto Oswaldo Cruz, vol. 87, pp. 175–177, 1992. View at Google Scholar · View at Scopus
  106. K. C. Williamson, M. D. Criscio, and D. C. Kaslow, “Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230,” Molecular and Biochemical Parasitology, vol. 58, no. 2, pp. 355–358, 1993. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Mouafo, A. Weck-Heimann, J. F. Dubremetz, and R. Entzeroth, “Monoclonal antibodies specific for the two types of wall-forming bodies of Eimeria tenella macrogametes (Coccidia, Apicomplexa),” Parasitology Research, vol. 88, no. 3, pp. 217–224, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Wallach, A. Halabi, G. Pillemer et al., “Maternal immunization with gametocyte antigens as a means of providing protective immunity against Eimeria maxima in chickens,” Infection and Immunity, vol. 60, no. 5, pp. 2036–2039, 1992. View at Google Scholar · View at Scopus
  109. M. Wallach, N. C. Smith, C. M. D. Miller, J. Eckert, and M. E. Rose, “Eimeria maxima: ELISA and Western blot analyses of protective sera,” Parasite Immunology, vol. 16, no. 7, pp. 377–383, 1994. View at Google Scholar · View at Scopus
  110. M. Wallach, “Role of antibody in immunity and control of chicken coccidiosis,” Trends in Parasitology, vol. 26, no. 8, pp. 382–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Jenkins, D. Kerr, R. Fayer, and R. Wall, “Serum and colostrum antibody responses induced by jet injection of sheep with DNA encoding a Cryptosporidium parvum antigen,” Vaccine, vol. 13, no. 17, pp. 1658–1664, 1995. View at Publisher · View at Google Scholar · View at Scopus
  112. M. C. Jenkins, “Present and future control of cryptosporidiosis in humans and animals,” Expert Review of Vaccines, vol. 3, no. 6, pp. 669–671, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. D. R. Green, “Apoptotic pathways: paper wraps stone blunts scissors,” Cell, vol. 102, no. 1, pp. 1–4, 2000. View at Google Scholar · View at Scopus
  114. X. M. Chen, S. A. Levine, P. L. Splinter et al., “Cryptosporidium parvum activates nuclear factor κB in biliary epithelia preventing epithelial cell apoptosis,” Gastroenterology, vol. 120, no. 7, pp. 1774–1783, 2001. View at Google Scholar · View at Scopus
  115. P. Küenzi, P. Schneider, and D. A. E. Dobbelaere, “Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis,” Journal of Immunology, vol. 171, no. 3, pp. 1224–1231, 2003. View at Google Scholar · View at Scopus
  116. M. Lang, M. Kann, H. Zahner, A. Taubert, and C. Hermosilla, “Inhibition of host cell apoptosis by Eimeria bovis sporozoites,” Veterinary Parasitology, vol. 160, no. 1-2, pp. 25–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Leirião, S. S. Albuquerque, S. Corso et al., “HGF/MET signalling protects Plasmodium-infected host cells from apoptosis,” Cellular Microbiology, vol. 7, no. 4, pp. 603–609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. A. S. I. Aly and K. Matuschewski, “A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts,” Journal of Experimental Medicine, vol. 202, no. 2, pp. 225–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. A. P. Sinai, T. M. Payne, J. C. Carmen, L. Hardi, S. J. Watson, and R. E. Molestina, “Mechanisms underlying the manipulation of host apoptotic pathways by Toxoplasma gondii,” International Journal for Parasitology, vol. 34, no. 3, pp. 381–391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. T. M. Payne, R. E. Molestina, and A. P. Sinai, “Inhibition of caspase activation and a requirement for NF-κB function in the Toxoplasma gondii-mediated blockade of host apoptosis,” Journal of Cell Science, vol. 116, no. 21, pp. 4345–4358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. X. M. Chen, G. J. Gores, C. V. Paya, and N. F. LaRusso, “Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism,” American Journal of Physiology, vol. 277, no. 3, pp. G599–G608, 1999. View at Google Scholar · View at Scopus
  122. K. Marsh and R. W. Snow, “Host-parasite interaction and morbidity in malaria endemic areas,” Philosophical Transactions of the Royal Society B, vol. 352, no. 1359, pp. 1385–1394, 1997. View at Publisher · View at Google Scholar