Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2014, Article ID 501328, 6 pages
http://dx.doi.org/10.1155/2014/501328
Research Article

Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae

1Laboratório de Produtos Naturais, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A., C. Simões, Avenida Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970 Maceió, AL, Brazil
2Universidade Federal de Alagoas, Icbs Campus A., C. Simões, Avenida Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970 Maceió, AL, Brazil

Received 26 September 2013; Revised 23 December 2013; Accepted 23 December 2013; Published 13 February 2014

Academic Editor: D. S. Lindsay

Copyright © 2014 Elíca Amara Cecília Guedes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40 μg·mL−1 (11.1460 μg·mL−1 and 25.8689 μg·mL−1, resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40 μg·mL−1 (29.018 μg·mL−1 and 17.230 μg·mL−1, resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277 μg·mL−1 and 706.990 μg·mL−1) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar.