Table of Contents Author Guidelines Submit a Manuscript
Journal of Probability and Statistics
Volume 2012, Article ID 614102, 19 pages
http://dx.doi.org/10.1155/2012/614102
Research Article

Mixed-Effects Tobit Joint Models for Longitudinal Data with Skewness, Detection Limits, and Measurement Errors

Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, USA

Received 29 May 2011; Accepted 13 August 2011

Academic Editor: Lang Wu

Copyright © 2012 Getachew A. Dagne and Yangxin Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Higgins, M. Davidian, and D. M. Gilitinan, “A two-step approach to measurement error in time-dependent covariates in nonlinear mixed-effects models, with application to IGF-I pharmacokinetics,” Journal of the American Statistical Association, vol. 92, pp. 436–448, 1997. View at Google Scholar
  2. W. Liu and L. Wu, “Simultaneous inference for semiparametric nonlinear mixed-effects models with covariate measurement errors and missing responses,” Biometrics, vol. 63, no. 2, pp. 342–350, 2007. View at Publisher · View at Google Scholar
  3. M. S. Wulfsohn and A. A. Tsiatis, “A joint model for survival and longitudinal data measured with error,” Biometrics, vol. 53, no. 1, pp. 330–339, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. L. Wu, “A joint model for nonlinear mixed-effects models with censoring and covariants measured with error, with application to AIDS studies,” Journal of the American Statistical Association, vol. 97, no. 460, pp. 955–964, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. Y. Huang and G. Dagne, “A Bayesian approach to joint mixed-effects models with a skew-normal distribution and measurement errors in covariates,” Biometrics, vol. 67, no. 1, pp. 260–269, 2011. View at Publisher · View at Google Scholar
  6. G. Verbeke and E. Lesaffre, “A linear mixed-effects model with heterogeneity in the random-effects population,” Journal of the American Statistical Association, vol. 91, no. 433, pp. 217–221, 1996. View at Google Scholar · View at Scopus
  7. S. K. Sahu, D. K. Dey, and M. D. Branco, “A new class of multivariate skew distributions with applications to Bayesian regression models,” The Canadian Journal of Statistics, vol. 31, no. 2, pp. 129–150, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. E. P. Acosta, H. Wu, S. M. Hammer et al., “Comparison of two indinavir/ritonavir regimens in the treatment of HIV-infected individuals,” Journal of Acquired Immune Deficiency Syndromes, vol. 37, no. 3, pp. 1358–1366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Perelson, P. Essunger, Y. Cao et al., “Decay characteristics of HIV-1-infected compartments during combination therapy,” Nature, vol. 387, no. 6629, pp. 188–191, 1997. View at Publisher · View at Google Scholar
  10. A. A. Ding and H. Wu, “Relationships between antiviral treatment effects and biphasic viral decay rates in modeling HIV dynamics,” Mathematical Biosciences, vol. 160, no. 1, pp. 63–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Davidian and D. M. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman & Hall, London, UK, 1995.
  12. J. P. Hughes, “Mixed effects models with censored data with application to HIV RNA levels,” Biometrics, vol. 55, no. 2, pp. 625–629, 1999. View at Google Scholar · View at Scopus
  13. J. Tobin, “Estimation of relationships for limited dependent variables,” Econometrica, vol. 26, pp. 24–36, 1958. View at Google Scholar · View at Zentralblatt MATH
  14. R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu, Measurement Error in Nonlinear Models: A Modern Perspective, Chapman & Hall, Boca Raton, Fla, USA, 2nd edition, 2006. View at Publisher · View at Google Scholar
  15. H. Wu and J. T. Zhang, “The study of long-term HIV dynamics using semi-parametric non-linear mixed-effects models,” Statistics in Medicine, vol. 21, no. 23, pp. 3655–3675, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. C. Pinheiro and M. D. Bates, Mixed-Effects Models in S and S-PLUS, Springer, New York, NY, USA, 2000.
  17. D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, “WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility,” Statistics and Computing, vol. 10, no. 4, pp. 325–337, 2000. View at Google Scholar · View at Scopus
  18. Y. Huang, D. Liu, and H. Wu, “Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system,” Biometrics, vol. 62, no. 2, pp. 413–423, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3, pp. 581–592, 1976. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz, “Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection,” Nature, vol. 373, no. 6510, pp. 123–126, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wu, “Simultaneous inference for longitudinal data with detection limits and covariates measured with errors, with application to AIDS studies,” Statistics in Medicine, vol. 23, no. 11, pp. 1715–1731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van der Linde, “Bayesian measures of model complexity and fit,” Journal of the Royal Statistical Society. Series B, vol. 64, no. 4, pp. 583–639, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. A. Azzalini and A. Capitanio, “Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution,” Journal of the Royal Statistical Society. Series B, vol. 65, no. 2, pp. 367–389, 2003. View at Publisher · View at Google Scholar
  24. A. Jara, F. Quintana, and E. San Martín, “Linear mixed models with skew-elliptical distributions: a Bayesian approach,” Computational Statistics & Data Analysis, vol. 52, no. 11, pp. 5033–5045, 2008. View at Publisher · View at Google Scholar
  25. R. B. Arellano-Valle, H. Bolfarine, and V. H. Lachos, “Bayesian inference for skew-normal linear mixed models,” Journal of Applied Statistics, vol. 34, no. 5-6, pp. 663–682, 2007. View at Publisher · View at Google Scholar