Table of Contents Author Guidelines Submit a Manuscript
Journal of Probability and Statistics
Volume 2012, Article ID 935621, 10 pages
http://dx.doi.org/10.1155/2012/935621
Research Article

Sample Size Growth with an Increasing Number of Comparisons

1Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA
2Division of Biostatistics, NYU School of Medicine, New York, NY 10016, USA

Received 30 March 2012; Accepted 8 June 2012

Academic Editor: Wei T. Pan

Copyright © 2012 Chi-Hong Tseng and Yongzhao Shao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Klein, C. Zeiss, E. Y. Chew et al., “Complement factor H polymorphism in age-related macular degeneration,” Science, vol. 308, no. 5720, pp. 385–389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–537, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. P. H. Westfall and S. S. Young, Resample-Based Multiple Testing: Examples and Methods for p-Value Adjustment, John Wiley & Sons, New York, NY, USA, 1993.
  4. J. C. Hsu, Multiple Comparisons: Theory and Methods, Chapman & Hall, London, UK, 1996.
  5. P. H. Westfall and R. D. Wolfinger, “Multiple tests with discrete distributions,” American Statistician, vol. 51, no. 1, pp. 3–8, 1997. View at Google Scholar · View at Scopus
  6. N. J. Risch, “Searching for genetic determinants in the new millennium,” Nature, vol. 405, no. 6788, pp. 847–856, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Storey and R. Tibshirani, “Statistical significance for genomewide studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9440–9445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society, Series B, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar
  9. J. D. Storey, “A direct approach to false discovery rates,” Journal of the Royal Statistical Society, Series B, vol. 64, no. 3, pp. 479–498, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Yang, J. Cui, I. Chazaro, L. A. Cupples, and S. Demissie, “Power and type I error rate of fales discovery rate approaches in genome-wide association studies,” BMC Genetics, vol. 6, supplement 1, article S134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Witte, R. C. Elston, and L. R. Cardon, “On the relative sample size required for multiple comparisons,” Statistics in Medicine, vol. 19, no. 3, pp. 369–372, 2000. View at Google Scholar
  12. B. Rosner, Fundamentals of Biostatistics, Duxbury, Los Angeles, Calif, USA, 2006.
  13. Y. Ge, S. Dudoit, and T. P. Speed, “Resampling-based multiple testing for microarray data analysis,” Test, vol. 12, no. 1, pp. 1–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Huang, H. Xu, V. Calian, and J. C. Hsu, “To permute or not to permute,” Bioinformatics, vol. 22, no. 18, pp. 2244–2248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. S. Spielman, R. E. McGinnis, and W. J. Ewens, “Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM),” American Journal of Human Genetics, vol. 52, no. 3, pp. 506–516, 1993. View at Google Scholar · View at Scopus
  16. N. Risch and K. Merikangas, “The future of genetic studies of complex human diseases,” Science, vol. 273, no. 5281, pp. 1516–1517, 1996. View at Google Scholar · View at Scopus
  17. Y. Shao and C. H. Tseng, “Sample size calculation with dependence adjustment for FDR-control in microarray studies,” Statistics in Medicine, vol. 26, no. 23, pp. 4219–4237, 2007. View at Publisher · View at Google Scholar
  18. H. Ahn and J. J. Chen, “Generation of over-dispersed and under-dispersed binomial variates,” Journal of Computational and Graphical Statistics, vol. 4, no. 1, pp. 55–64, 1995. View at Publisher · View at Google Scholar
  19. P. Billingsley, Probability and Measure, John Wiley & Sons, New York, NY, USA, 1995.