Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2012 (2012), Article ID 587407, 11 pages
http://dx.doi.org/10.1155/2012/587407
Research Article

Geometric Parameter Identification of a 6-DOF Space Robot Using a Laser-Ranger

1State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
2Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518057, China

Received 27 December 2011; Revised 7 March 2012; Accepted 8 March 2012

Academic Editor: Zhuming Bi

Copyright © 2012 Yu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. K. Veitschegger and C. H. Wu, “Robot calibration and compensation,” IEEE Journal of Robotics and Automation, vol. 4, no. 6, pp. 643–656, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. H. W. Stone, A. C. Sanderson, and C. P. Neuman, “Arm signature identification system,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 41–48, San Francisco, Calif, USA, 1986.
  3. H. W. Stone, A. C. Sanderson, C. P. Neuman et al., “A prototype arm signature identification system,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 175–182, Raleigh, NC, USA, 1987.
  4. L. Beyer and J. Wulfsberg, “Practical robot calibration with ROSY,” Robotica, vol. 22, no. 5, pp. 505–512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Sun and J. M. Hollerbach, “Active robot calibration algorithm,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 1276–1281, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. Kang, M. W. Pryor, and D. Tesar, “Kinematic model and metrology system for modular robot calibration,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2894–2899, New Orleans, Fla, USA, May 2004. View at Scopus
  7. J. Chen and L. M. Chao, “Positioning error analysis for robot manipulators with all rotary joints,” IEEE Transactions on Robotics and Automation, vol. 3, no. 6, pp. 539–545, 1987. View at Google Scholar · View at Scopus
  8. R. P. Judd and A. B. Knasinski, “A technique to calibrate industrical robots with experimental verification,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 351–357, Raleigh, NC, USA, 1987.
  9. C. H. Gong, J. X. Yuan, and J. Ni, “Nongeometric error identification and compensation for robotic system by inverse calibration,” International Journal of Machine Tools and Manufacture, vol. 40, no. 14, pp. 2119–2137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lightcap, S. Hamner, T. Schmitz, and S. Banks, “Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 452–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Drouet, S. Dubowsky, S. Zeghloul, and C. Mavroidis, “Compensation of geometric and elastic errors in large manipulators with an application to a high accuracy medical system,” Robotica, vol. 20, no. 3, pp. 341–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Radkhah, T. Hemker, and O. V. Stryk, “A novel self-calibration method for industrial robots incorporating geometric and nongeometric effects,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA '08), pp. 864–869, Takamatsu, Japan, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Hirzinger, K. Landzettel, B. Brunner et al., “DLR's robotics technologies for on-orbit servicing,” Advanced Robotics, vol. 18, no. 2, pp. 142–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl, “Sensor-based space robotics-ROTEX and its telerobotic features,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 649–661, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Liu, Y. Shen, N. Xi et al., “Rapid robot/workcell calibration using line-based approach,” in Proceedings of the 4th IEEE Conference on Automation Science and Engineering (CASE '08), pp. 510–515, Arlington, Va, USA, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. S. Gatla, R. Lumia, J. Wood, and G. Starr, “Calibration of industrial robots by magnifying errors on a distant plane,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '07), pp. 3834–3841, San Diego, Calif, USA, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. W. Park, B. J. Lee, S. H. Cho, Y. D. Hong, and J. H. Kim, “Laser-based kinematic calibration of robot manipulator using differential kinematics,” IEEE/ASME Transactions on Mechatronics, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Hayati, “Robot arm geometric link parameter estimation,” in Proceedings of the IEEE International Conference on Decision and Control, pp. 1477–1483, San Antonio, Tex, USA, 1983.
  19. L. Everett, M Driels, and B. Mooring, “Kinematic modeling for robot calibration,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 183–190, Raleigh, NC, USA, 1987.
  20. Y. Sun and J. M. Hollerbach, “Observability index selection for robot calibration,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 831–836, Pasadena, Calif, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus