Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2015 (2015), Article ID 921370, 17 pages
http://dx.doi.org/10.1155/2015/921370
Research Article

The COMRADE System for Multirobot Autonomous Landmine Detection in Postconflict Regions

1Computer Science Department, University of Nebraska, Omaha, NE 68182, USA
2Mechanical Engineering Department, NIT, Surathkal, Karnataka 575025, India
3Computer Science Department, INAOE, 72840 Puebla, PUE, Mexico
4Computer Science Department, Allegheny College, Meadville, PA 16335, USA

Received 14 August 2014; Accepted 12 January 2015

Academic Editor: Giovanni Muscato

Copyright © 2015 Prithviraj Dasgupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hiznay, “Landmine monitor report,” Tech. Rep., 2011. View at Google Scholar
  2. M. Acheroy, “Mine action: status of sensor technology for close-in and remote detection of antipersonnel mines,” in Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar (IWAGPR '05), pp. 3–13, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. K. Habib, “Humanitarian demining: reality and the challenge of technology—the state of the arts,” International Journal of Advanced Robotic Systems, vol. 4, no. 2, pp. 151–172, 2007. View at Google Scholar · View at Scopus
  4. H. Stefan, “Some robotic approaches and technologiesfor humanitarian demining,” in Humanitarian Demining, K. H. Maki, Ed., InTech Open Access Publishing, Vienna, Austria, 2008. View at Publisher · View at Google Scholar
  5. P. Debenest, E. F. Fukushima, Y. Tojo, and S. Hirose, “A new approach to humanitarian demining,” Autonomous Robots, vol. 18, no. 3, pp. 323–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Freese, P. Debenest, E. F. Fukushima, and S. Hirose, “Development of deminer-assisting robotic tools at tokyo institute of technology,” in Humanitarian Demining, M. K. Habib, Ed., InTech Open Access Publishing, Vienna, Austria, 2008. View at Google Scholar
  7. Y. Mori, “Peace: an excavation-type demining robot for anti-personnel mines,” in Humanitarian Demining, K. H. Maki, Ed., InTech Open Access Publishing, Vienna, Austria, 2008. View at Google Scholar
  8. S. Havlik, “Land robotic vehicles for demining,” in Humanitarian Demining, M. K. Habib, Ed., InTechOpen, 2008. View at Google Scholar
  9. S. Masunaga and K. Nonami, “Controlled metal detector mounted on mine detection robot,” International Journal of Advanced Robotic Systems, vol. 4, no. 2, pp. 207–218, 2007. View at Google Scholar · View at Scopus
  10. T. Fukada, Y. Hasegawa, Y. Kawai, S. Sato, Z. Zyada, and T. Matsuno, “GPR signal processing with geography adaptive scanning using vector radar for antipersonal landmine detection,” International Journal of Advanced Robotic Systems, vol. 4, no. 2, pp. 199–206, 2007. View at Google Scholar · View at Scopus
  11. C. Ratto, P. Torrione, K. Morton, and L. Collins, “Context-dependent landmine detection with ground-penetrating radar using a hidden Markov context model,” in Proceedings of the 30th IEEE International Geoscience and Remote Sensing Symposium (IGARSS '10), pp. 4192–4195, Honolulu, Hawaii, USA, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. D. Breejen, K. Schutte, and F. Cremer, “Sensor fusion for anti personnel landmine detection, a case study,” in Proceedings of the Detection and Remediation Technologies for Mines and Minelike Targets IV, vol. 3710, pp. 1235–1245, April 1999. View at Scopus
  13. S. Bermúdez i Badia, U. Bernardet, A. Guanella, P. Pyk, and P. F. M. J. Verschure, “A biologically based chemo-sensing UAV for humanitarian demining,” International Journal of Advanced Robotic Systems, vol. 4, no. 2, pp. 187–198, 2007. View at Google Scholar · View at Scopus
  14. X. Feng and M. Sato, “Landmine imaging by a hand-held GPR and metal detector sensor (ALIS),” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '05), vol. 1, IEEE, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Verlinde, M. Acheroy, G. Nesti, and A. Sieber, “Preparing the Joint Multi-sensor Mine-signatures project database for data fusion,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS '01), vol. 7, pp. 3240–3242, July 2001. View at Scopus
  16. I. Bloch, N. Milisavljević, and M. Acheroy, “Multisensor data fusion for spaceborne and airborne reduction of mine suspected areas,” International Journal of Advanced Robotic Systems, vol. 4, no. 2, pp. 173–186, 2007. View at Google Scholar · View at Scopus
  17. N. Milisavljević and I. Bloch, “Sensor fusion in anti-personnel mine detection using a two-level belief function model,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 33, no. 2, pp. 269–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Y. Rachkov, L. Marques, and A. T. De Almeida, “Multisensor demining robot,” Autonomous Robots, vol. 18, no. 3, pp. 275–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Frigui, L. Zhang, P. Gader, J. N. Wilson, K. C. Ho, and A. Mendez-Vazquez, “An evaluation of several fusion algorithms for anti-tank landmine detection and discrimination,” Information Fusion, vol. 13, no. 2, pp. 161–174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. 2015, http://www.fp7-tiramisu.eu/.
  21. J. Prado, G. Cabrita, and L. Marques, “Bayesian sensor fusion for land-mine detection using a dual-sensor hand-held device,” in Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON '13), pp. 3887–3892, November 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Ishikawa, K. Furuta, and N. Pavkovic, “Test and evaluation of Japanese GPR-EMI dual sensor systems at the Benkovac test site in Croatia,” in Anti-Personnel Landmine Detection for Humanitarian Demining, K. Furuta and J. Ishikawa, Eds., pp. 63–81, Springer, London, UK, 2009. View at Google Scholar
  23. F. A. El Bakkoush, “Current research activities for landmine detection by nuclear technique in libya,” 2009.
  24. P. Santana, J. Barata, H. Cruz, A. Mestre, J. Lisboa, and L. Flores, “A multi-robot system for landmine detection,” in Proceedings of the 10th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA '05), pp. 721–728, September 2005. View at Scopus
  25. M. Long, A. Gage, R. Murphy, and K. Valavanis, “Application of the distributed field robot architecture to a simulated demining task,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3193–3200, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. August 2014, http://cmantic.unomaha.edu/projects/comrades/.
  27. H. Choset, W. Burgard, S. Hutchinson et al., Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT Press, Cambridge, Mass, USA, 2005.
  28. N. Hazon and G. A. Kaminka, “On redundancy, efficiency, and robustness in coverage for multiple robots,” Robotics and Autonomous Systems, vol. 56, no. 12, pp. 1102–1114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Hert and V. Lumelsky, “Polygon area decomposition for multiple-robot workspace division,” International Journal of Computational Geometry and Applications, vol. 8, no. 4, pp. 437–466, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient Boustrophedon multi-robot coverage: an algorithmic approach,” Annals of Mathematics and Artificial Intelligence, vol. 52, no. 2–4, pp. 109–142, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  31. X. Zheng, S. Koenig, D. Kempe, and S. Jain, “Multirobot forest coverage for weighted and unweighted terrain,” IEEE Transactions on Robotics, vol. 26, no. 6, pp. 1018–1031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, UK, 2nd edition, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  33. M. A. Batalin and G. S. Sukhatme, “Spreading out: a local approach to multi-robot coverage,” in Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems, pp. 373–382, 2002. View at Google Scholar
  34. K. Guruprasad, Z. Wilson, and P. Dasgupta, “Complete coverage of an initially unknown environment by multiple robots using voronoi partition,” in Proceedings of the 2nd International Conference on Advances in Control and Optimization of Dynamical Systems (ACODS '12), Bangalore, India, 2012.
  35. J. Cortés, S. Martínez, T. Karataş, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete partitioning and coverage control for gossiping robots,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 364–378, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. K. R. Guruprasad and P. Dasgupta, “Distributed Voronoi partitioning for multi-robot systems with limited range sensors,” in Proceedings of the 25th IEEE/RSJ International Conference on Robotics and Intelligent Systems (IROS '12), pp. 3546–3552, Vilamoura, Portugal, October 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continuous areas by a mobile robot,” Annals of Mathematics and Artificial Intelligence, vol. 31, no. 1–4, pp. 77–98, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Hungerford, P. Dasgupta, and K. R. Guruprasad, “Distributed, complete, multi-robot coverage of initially unknown environments using repartitioning,” in Proceedings of the 13th International Confernece on Autonomous Agents and Multi-Agent Systems (AAMAS '14), pp. 1453–1454, 2014.
  40. B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem,” in Proceedings of the American Control Conference (ACC '09), pp. 1292–1297, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems,” International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot coordination: a survey and analysis,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1257–1270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Liu and D. Shell, “A distributable and computation-flexible assignment algorithm: from local task swapping to global optimality,” in Proceedings of the Robotics Science and Systems, pp. 33–41, 2012.
  45. X. Huang and R. F. Serfozo, “Spatial queueing processes,” Mathematics of Operations Research, vol. 24, no. 4, pp. 865–886, 1999. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  46. F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1482–1504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Meléndez, P. Dasgupta, and W. Lenagh, “A stochastic queueing model for multi-robot task allocation,” in Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO '12), pp. 256–261, 2012.
  48. W. Lenagh, Multi-robot task allocation: a spatial queueing approach [M.S. thesis], University of Nebraska, Omaha, Nebraska, 2013.
  49. P. Dasgupta, “Multi-robot task allocation for performing cooperative foraging tasks in an initially unknown environment,” in Innovations in Defense Support Systems—2, L. Jain, Ed., pp. 5–20, Springer, 2011. View at Google Scholar
  50. L. Breuer, “Spatial queues with infinitely many servers,” in From Markov Jump Processes to Spatial Queues, pp. 119–138, Springer, Dordrecht, The Netherlands, 2003. View at Publisher · View at Google Scholar
  51. H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955. View at Publisher · View at Google Scholar · View at MathSciNet
  52. L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithm design for multi-robot generalized task assignment problem,” in Proceedings of the 26th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '13), pp. 4765–4771, November 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Jumadinova and P. Dasgupta, “Multirobot autonomous landmine detection using distributed multisensor information aggregation,” in Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications, vol. 8407 of Proceedings of the SPIE, pp. 1–12, Baltimore, Md, USA, April 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Manyika and H. Durrant-Whyte, Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach, Prentice Hall, Upper Saddle River, NJ, USA, 1995.