Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 131628, 6 pages
http://dx.doi.org/10.1155/2009/131628
Research Article

The Adsorption Properties of Bacillus atrophaeus Spores on Single-Wall Carbon Nanotubes

1Department of Mechanical & Aerospace Engineering , New Mexico State University, Las Cruces, NM 88003, USA
2Department of Chemical Engineering , New Mexico State University, Las Cruces, NM 88003, USA
3Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA

Received 21 September 2008; Accepted 19 March 2009

Academic Editor: Wojtek Wlodarski

Copyright © 2009 P. Cortes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654–657, 2003. View at Publisher · View at Google Scholar · View at PubMed
  2. P. P. Joshi, S. A. Merchant, Y. Wang, and D. W. Schmidtke, “Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites,” Analytical Chemistry, vol. 77, no. 10, pp. 3183–3188, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes: C1,000,000 and beyond,” American Scientist, vol. 85, no. 4, pp. 324–337, 1997. View at Google Scholar
  4. R. S. Ruoff, D. Qian, and W. K. Liu, “Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements,” Comptes Rendus Physique, vol. 4, no. 9, pp. 993–1008, 2003. View at Publisher · View at Google Scholar
  5. E. Greenbaum, M. Rodriguez, and S. A. Sanders, “Biosensors for detection of chemical warfare agents,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, pp. 375–388, Marcel Dekker, New York, NY, USA, 2004. View at Google Scholar
  6. Y. Lin, W. Yantasee, F. Lu et al., “Biosensores based on carbon nanotubes,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, pp. 361–373, Marcel Dekker, New York, NY, USA, 2004. View at Google Scholar
  7. J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, “Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes,” Analytical Chemistry, vol. 74, no. 9, pp. 1993–1997, 2002. View at Publisher · View at Google Scholar
  8. X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, and J. F. Rusling, “Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes,” Electrochemistry Communications, vol. 5, no. 5, pp. 408–411, 2003. View at Publisher · View at Google Scholar
  9. S. G. Wang, Q. Zhang, R. Wang et al., “Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors,” Electrochemistry Communications, vol. 5, no. 9, pp. 800–803, 2003. View at Publisher · View at Google Scholar
  10. G.-C. Zhao, L. Zhang, X.-W. Wei, and Z.-S. Yang, “Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis,” Electrochemistry Communications, vol. 5, no. 9, pp. 825–829, 2003. View at Publisher · View at Google Scholar
  11. J. Li, Y. Lu, and M. Meyyappan, “Nano chemical sensors with polymer-coated carbon nanotubes,” IEEE Sensors Journal, vol. 6, no. 5, pp. 1047–1051, 2006. View at Publisher · View at Google Scholar
  12. D. Pantarotto, C. D. Partidos, R. Graff et al., “Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides,” Journal of the American Chemical Society, vol. 125, no. 20, pp. 6160–6164, 2003. View at Publisher · View at Google Scholar · View at PubMed
  13. http://www.nanosensorsinc.net/.
  14. G. Grüner, “Carbon nanotube transistors for biosensing applications,” Analytical and Bioanalytical Chemistry, vol. 384, no. 2, pp. 322–335, 2006. View at Publisher · View at Google Scholar · View at PubMed
  15. S. Deng, V. K. K. Upadhyayula, G. B. Smith, and M. C. Mitchell, “Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes,” IEEE Sensors Journal, vol. 8, no. 6, pp. 954–962, 2008. View at Publisher · View at Google Scholar
  16. V. K. K. Upadhyayula, Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes, Ph.D. thesis, New Mexico State University, Las Cruces, NM, USA, 2007.
  17. J. B. Nuzzo, “The biological threat to U.S. water supplies: toward a national water security policy,” Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, vol. 4, no. 2, pp. 147–159, 2006. View at Publisher · View at Google Scholar · View at PubMed
  18. J. L. Sedillo, A. Quintana, K. Souza, K. H. Oshima, and G. B. Smith, “The development of point-of-use water filters as sampling devices in bioforensics: extent of microbial sorption and elution,” Journal of Environmental Monitoring, vol. 10, no. 6, pp. 718–723, 2008. View at Publisher · View at Google Scholar · View at PubMed
  19. A. Vaseashta and J. Irudayaraj, “Nanostructured and nanoscale devices and sensors,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 1, pp. 35–42, 2005. View at Google Scholar
  20. P. Cortés, K. Lozano, E. V. Barrera, and J. Bonilla-Rios, “Effects of nanofiber treatments on the properties of vapor-grown carbon fiber reinforced polymer composites,” Journal of Applied Polymer Science, vol. 89, no. 9, pp. 2527–2534, 2003. View at Publisher · View at Google Scholar
  21. P. Cortés, T. Zhu, and R. Guzman, submitted to Science and Technology of Advanced Materials.
  22. J. Liu, A. G. Rinzler, H. Dai et al., “Fullerene pipes,” Science, vol. 280, no. 5367, pp. 1253–1256, 1998. View at Publisher · View at Google Scholar