Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009 (2009), Article ID 187916, 11 pages
http://dx.doi.org/10.1155/2009/187916
Research Article

Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

Center for Engineering Science Advanced Research, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA

Received 26 May 2009; Revised 2 September 2009; Accepted 17 November 2009

Academic Editor: Tommaso Melodia

Copyright © 2009 Neena Imam and Jacob Barhen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.