Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 683280, 6 pages
http://dx.doi.org/10.1155/2009/683280
Research Article

Synthesis of Nanowires by Spray Pyrolysis

Department of Chemical Engineering, New Mexico State University, P.O. Box 30001, MSC 3805, Las Cruces, NM 88003, USA

Received 9 October 2008; Revised 3 January 2009; Accepted 25 March 2009

Academic Editor: Joan Ramon Morante

Copyright © 2009 Kalyana C. Pingali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Deck and K. Vecchio, “Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes,” Carbon, vol. 43, no. 12, pp. 2608–2617, 2005. View at Publisher · View at Google Scholar
  2. L. P. Biró, Z. E. Horváth, A. A. Koós et al., “Direct synthesis of multi-walled and single-walled carbon nanotubes by spray-pyrolysis,” Journal of Optoelectronics and Advanced Materials, vol. 5, no. 3, pp. 661–666, 2003. View at Google Scholar
  3. Al. Darabont, P. Nemes-Incze, K. Kertész et al., “Synthesis of carbon nanotubes by spray pyrolysis and their investigation by electron microscopy,” Journal of Optoelectronics and Advanced Materials, vol. 7, no. 2, pp. 631–636, 2005. View at Google Scholar
  4. C. N. R. Rao, A. Govindaraj, G. Gundiah, and S. R. C. Vivekchand, “Nanotubes and nanowires,” Chemical Engineering Science, vol. 59, no. 22-23, pp. 4665–4671, 2004. View at Publisher · View at Google Scholar
  5. S. R. C. Vivekchand, L. M. Cele, F. L. Deepak, A. R. Raju, and A. Govindaraj, “Carbon nanotubes by nebulized spray pyrolysis,” Chemical Physics Letters, vol. 386, no. 4–6, pp. 313–318, 2004. View at Publisher · View at Google Scholar
  6. R. A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, and M. Sharon, “Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: turpentine oil,” Chemical Physics Letters, vol. 414, no. 1–3, pp. 6–10, 2005. View at Publisher · View at Google Scholar
  7. L. F. Su, J. N. Wang, F. Yu, Z. M. Sheng, H. Chang, and C. Pak, “Continuous production of single-wall carbon nanotubes by spray pyrolysis of alcohol with dissolved ferrocene,” Chemical Physics Letters, vol. 420, no. 4–6, pp. 421–425, 2006. View at Publisher · View at Google Scholar
  8. G. Nabiyouni, “Giant magnetoresistance in spintronic Co/Pt nanowire structures,” Metrology and Measurement Systems, vol. 15, no. 2, pp. 135–143, 2008. View at Google Scholar
  9. V. A. Antohe, A. Radu, S. Yunus et al., “A versatile method to grow localized arrays of nanowires for highly sensitive capacitive devices,” Journal of Optoelectronics and Advanced Materials, vol. 10, no. 11, pp. 2936–2941, 2008. View at Google Scholar
  10. N. D. Hoa, N. Van Quy, M. An et al., “Tin-oxide nanotubes for gas sensor application fabricated using SWNTs as a template,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 10, pp. 5586–5589, 2008. View at Publisher · View at Google Scholar
  11. J. Y. Park, J.-J. Kim, and S. S. Kim, “Ambient air effects on electrical transport properties of ZnO nanorod transistors,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 11, pp. 5929–5933, 2008. View at Publisher · View at Google Scholar
  12. J. B. Baxter and E. S. Aydil, “Metallorganic chemical vapor deposition of ZnO nanowires from zinc acetylacetonate and oxygen,” Journal of the Electrochemical Society, vol. 156, no. 1, pp. H52–H58, 2009. View at Publisher · View at Google Scholar
  13. B. He, T. J. Morrow, and C. D. Keating, “Nanowire sensors for multiplexed detection of biomolecules,” Current Opinion in Chemical Biology, vol. 12, no. 5, pp. 522–528, 2008. View at Publisher · View at Google Scholar
  14. G. Neri, G. Micali, A. Bonavita et al., “Tungsten oxide nanowires-based ammonia gas sensors,” Sensor Letters, vol. 6, no. 4, pp. 590–595, 2008. View at Publisher · View at Google Scholar
  15. S. Lettieri, A. Setaro, A. Bismuto et al., “Light emission properties of SnO2 nanowires for applications in gas sensing,” Sensor Letters, vol. 6, no. 4, pp. 596–600, 2008. View at Publisher · View at Google Scholar
  16. J. Martinez, R. V. Martínez, and R. Garcia, “Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography,” Nano Letters, vol. 8, no. 11, pp. 3636–3639, 2008. View at Publisher · View at Google Scholar
  17. J.-W. Lee, K.-J. Moon, M.-H. Ham, and J.-M. Myoung, “Dielectrophoretic assembly of GaN nanowires for UV sensor applications,” Solid State Communications, vol. 148, no. 5-6, pp. 194–198, 2008. View at Publisher · View at Google Scholar
  18. M. S. Mohlala, X.-Y. Liu, J. M. Robinson, and N. J. Coville, “Organometallic precursors for use as catalysts in carbon nanotube synthesis,” Organometallics, vol. 24, no. 5, pp. 972–976, 2005. View at Publisher · View at Google Scholar
  19. O. N. Srivastava, A. Srivastava, D. Dash et al., “Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT-blood platelet clusters),” Pramana, vol. 65, no. 4, pp. 581–592, 2005. View at Publisher · View at Google Scholar
  20. F. Paraguay-Delgado, W. Antúnez-Flores, M. Miki-Yoshida et al., “Structural analysis and growing mechanisms for long SnO2 nanorods synthesized by spray pyrolysis,” Nanotechnology, vol. 16, no. 6, pp. 688–694, 2005. View at Publisher · View at Google Scholar
  21. K. C. Pingali, D. A. Rockstraw, and S. Deng, “Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate,” Aerosol Science and Technology, vol. 39, no. 10, pp. 1010–1014, 2005. View at Publisher · View at Google Scholar
  22. K. C. Pingali, D. A. Rockstraw, and S. Deng, “Synthesis of carbon nanoparticle thin film with spray pyrolysis,” New Mexico Journal of Science, vol. 44, pp. 149–163, 2006. View at Google Scholar
  23. T. Doi, A. Fukuda, Y. Iriyama et al., “Low-temperature synthesis of graphitized nanofibers for reversible lithium-ion insertion/extraction,” Electrochemistry Communications, vol. 7, no. 1, pp. 10–13, 2005. View at Publisher · View at Google Scholar
  24. K. C. Pingali, S. Deng, and D. A. Rockstraw, “Deposition of Ru-Ni-S nanoparticles on carbon by spray-pyrolysis: effects of solvent and other processing parameters,” Current Nanoscience, vol. 3, no. 3, pp. 215–221, 2007. View at Publisher · View at Google Scholar
  25. R. L. Vander Wal and T. M. Ticich, “Comparative flame and furnace synthesis of single-walled carbon nanotubes,” Chemical Physics Letters, vol. 336, no. 1-2, pp. 24–32, 2001. View at Publisher · View at Google Scholar