Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2011, Article ID 106482, 8 pages
http://dx.doi.org/10.1155/2011/106482
Research Article

Model Design of Piezoelectric Micromachined Modal Gyroscope

National Key Laboratory of Micro/Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Received 30 May 2011; Revised 30 August 2011; Accepted 30 August 2011

Academic Editor: Andrea Cusano

Copyright © 2011 Xiaojun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Killian, M. Burmenko, and W. Hollinger, “High-performance fiber optic gyroscope with noise reduction,” in Proceedings of the 12th Fiber Optic and Laser Sensors (SPIE '94), vol. 2292, pp. 255–263, November 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. M. O. Scully and J. P. Dowling, “Quantum-noise limits to matter-wave interferometry,” Physical Review A, vol. 48, no. 4, pp. 3186–3190, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Classical and Quantum Gravity, vol. 17, no. 12, pp. 2385–2398, 2000. View at Google Scholar · View at Scopus
  4. A. Matthews and F. J. Rybak, “Comparison of hemispherical resonator gyro and optical gyros,” IEEE Aerospace and Electronic Systems Magazine, vol. 7, no. 5, pp. 40–46, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sensors and Actuators A, vol. 66, no. 1–3, pp. 33–39, 1998. View at Google Scholar · View at Scopus
  6. S. W. Lee, J. W. Rhim, S. W. Park, and S. S. Yang, “A micro rate gyroscope based on the SAW gyroscopic effect,” Journal of Micromechanics and Microengineering, vol. 33, pp. 1975–1977, 2007. View at Google Scholar
  7. P. Mottier and P. Pouteau, “Solid state optical gyrometer integrated on silicon,” Electronics Letters, vol. 33, no. 23, pp. 1975–1977, 1997. View at Google Scholar · View at Scopus
  8. W. Guo, H. Ma, Z. Jin, Y. Z. Tang, and Y. L. Wang, “A novel structure of passive ring waveguide resonator on silicon substrate,” in Proceedings of the SPIE, vol. 4928, pp. 297–300, October 2002. View at Publisher · View at Google Scholar
  9. J. N. Sharma, V. Walia, and S. K. Gupta, “Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space,” International Journal of Mechanical Sciences, vol. 50, no. 3, pp. 433–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Soderkvist, “Piezoelectric beams and vibrating angular rate sensors,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 38, no. 3, pp. 271–280, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. C. S. Chou, J. W. Yang, Y. C. Hwang, and H. J. Yang, “Analysis on vibrating piezoelectric beam gyroscope,” International Journal of Applied Electromagnetics in Materials, vol. 2, no. 3, pp. 227–241, 1991. View at Google Scholar
  12. I. A. Ulitko, “Mathematical theory of the fork-type wave gyroscope,” in Proceedings of the 49th Annual IEEE International Frequency Control Symposium, pp. 786–793, June 1995. View at Scopus
  13. S. Fujishima, T. Nakamura, and K. Fujimoto, “Piezoelectric vibratory gyroscope using flexural vibration of a triangular bar,” in Proceedings of the 45th Annual Symposium on Frequency Control, pp. 261–265, May 1991. View at Scopus
  14. G. M. Reese, E. L. Marek, and D. W. Lobitz, “Three-dimensional finite element calculations of an experimental quartz rotation sensor,” in Proceedings of the IEEE Ultrasonics Symposium, pp. 419–422, October 1989. View at Scopus
  15. H. Abe, T. Yoshida, T. Ishikawa, N. Miyazaki, and H. Watanabe, “Trapped-energy vibratory gyroscopes using a partially polarized piezoelectric ceramic plate,” Electronics and Communications in Japan, vol. 284, pp. 798–805, 2001. View at Google Scholar
  16. J. S. Yang, H. Y. Fang, and Q. Jiang, “A vibrating piezoelectric ceramic shell as a rotation sensor,” Smart Materials and Structures, vol. 9, no. 4, pp. 445–451, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. J. S. Burdess and T. Wren, “Theory of a piezoelectric disc gyroscope,” IEEE Transactions on Aerospace and Electronic Systems, vol. 22, no. 4, pp. 410–418, 1986. View at Google Scholar · View at Scopus
  18. J. S. Burdess, “The dynamics of a thin piezoelectric cylinder gyroscope,” Proceedings of the Institution of Mechanical Engineers, vol. 200, pp. 271–280, 1986. View at Publisher · View at Google Scholar
  19. P. W. Loveday, “A coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope,” Journal of Intelligent Material Systems and Structures, vol. 7, no. 1, pp. 44–53, 1996. View at Google Scholar
  20. K. Maenaka, H. Kohara, M. Nishimura, T. Fujita, and Y. Takayama, “Novel solid micro-gyroscope,” in Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 634–637, Istanbul, Turkey, January 2006. View at Scopus
  21. X. Wu, W. Chen, Y. Lu et al., “Vibratin analysis of a piezoelectric micromachined modal gyroscope,” Journal of Micromechanics and Microengineering, vol. 19, no. 12, Article ID 125008, 2009. View at Publisher · View at Google Scholar
  22. W. K. Sung, M. Dalal, and F. Ayazi, “mode-matched 0.9 MHz single proof-mass dual-axis gyroscope,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS '11), pp. 2821–2824, Beijing, China, June 2011. View at Publisher · View at Google Scholar
  23. B. J. Gallacher, J. S. Burdess, A. J. Harris, and M. E. McNie, “Principles of a three-axis vibrating gyroscope,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1333–1343, 2001. View at Publisher · View at Google Scholar · View at Scopus