Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2011 (2011), Article ID 601704, 10 pages
Research Article

Tetrodotoxin Detection by a Surface Plasmon Resonance Sensor in Pufferfish Matrices and Urine

1Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
2Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA

Received 24 April 2011; Accepted 26 May 2011

Academic Editor: Andrea Cusano

Copyright © 2011 Allen D. Taylor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Tetrodotoxin (TTX) poisoning is most commonly associated with consumption of pufferfish. TTX is a low molecular weight (~319 Da) neurotoxin that selectively blocks voltage-sensitive Na+-gated ion channels. The standard method accepted worldwide for monitoring TTX toxicity in food matrices is the mouse bioassay. Ethical concerns from live animal testing, low sample throughput, and analytical inaccuracies have led to the need for an alternative method. We have previously established that surface plasmon resonance (SPR) sensors can quantify TTX in aqueous buffer samples by an antibody-based inhibition assay. In this paper, we report the extension of the assay for the detection of TTX in both clinical- and food-relevant matrices. The assay was optimized for application to three relevant complex matrices: pufferfish liver extract, pufferfish muscle extract, and human urine. Matrix effects are discussed and calibration curves are presented. Naturally contaminated pufferfish liver and muscle extracts were analyzed by the SPR method, and the data is compared to liquid-chromatography electrospray-ionization multiple reactions monitoring mass spectrometry (LC/ESI/MRM/MS) data. Ten samples, including three from a poisoning incident, two control monkfish samples, and five toxic pufferfish samples, were analyzed using this method, and the data is compared to LC/ESI/MRM/MS analysis of the samples.