Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2011 (2011), Article ID 609758, 7 pages
http://dx.doi.org/10.1155/2011/609758
Research Article

Direct Immunosensor Design Based on the Electrochemical Reduction of 4-((4-Nitrophenyl)ethynyl)benzenethiol Monolayers

1School of Science, Lynchburg College, Lynchburg, VA 24501-3113, USA
2School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904-1000, USA
3Department of Chemistry and Physics, Longwood University, Farmville, VA 239093-1801, USA
4Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA

Received 25 May 2011; Accepted 13 August 2011

Academic Editor: Ignacio Matias

Copyright © 2011 Dwight A. Williams et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Pearson, A. Gill, and P. Vadgama, “Analytical aspects of biosensors,” Annals of Clinical Biochemistry, vol. 37, no. 2, pp. 119–145, 2000. View at Google Scholar
  2. H. Oyama, I. Suzuki, Y. Kato, T. Umemura, and J. Goto, “Oligosaccharide-assisted direct immunosensing of small molecules,” Analytical Chemistry, vol. 82, no. 11, pp. 4333–4336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive biosensors,” Electroanalysis, vol. 13, no. 3, pp. 173–180, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Mallat, D. Barceló, C. Barzen, G. Gauglitz, and R. Abuknesha, “Immunosensors for pesticide determination in natural waters,” Trends in Analytical Chemistry, vol. 20, no. 3, pp. 124–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Lazcka, F. J. D. Campo, and F. X. Munoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1205–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Rodriguez-Mozaz, M. P. Marco, M. J. Lopez de Alda, and D. Barceló, “Biosensors for environmental monitoring of endocrine disruptors: a review article,” Analytical and Bioanalytical Chemistry, vol. 378, no. 3, pp. 588–598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. G. Guilbault, B. Hock, and R. Schmid, “A piezoelectric immunobiosensor for atrazine in drinking water,” Biosensors and Bioelectronics, vol. 7, no. 6, pp. 411–419, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. J. L. Marty, B. Leca, and T. Noguer, “Biosensors for the detection of pesticides,” Analusis, vol. 26, no. 6, pp. M144–M149, 1998. View at Google Scholar · View at Scopus
  9. K. Catt, H. D. Niall, and G. W. Tregear, “Solid phase radioimmunoassay,” Nature, vol. 213, no. 5078, pp. 825–827, 1967. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Weiping, X. Bin, W. Lei et al., “Orientation of antibodies on a 3-aminopropyltriethoxylsilane-modified silicon wafer surface,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 35, no. 102, pp. 419–429, 1999. View at Google Scholar
  11. B. Lu, M. R. Smyth, and R. O'Kennedy, “Oriented immobilization of antibodies and its applications in immunoassays and immunosensors,” Analyst, vol. 121, no. 3, pp. 29R–32R, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Gottschalk, Ed., Glycoproteins, Elsevier, New York, NY, USA, 1972.
  13. D. J. O'Shannessy, “Hydrazido-derivatized supports in affinity chromatography,” Journal of Chromatography, vol. 510, pp. 13–21, 1990. View at Publisher · View at Google Scholar
  14. D. J. O'Shannessy and W. L. Hoffman, “Site-directed immobilization of glycoproteins on hydrazide-containing solid supports,” Biotechnology and Applied Biochemistry, vol. 9, no. 6, pp. 488–496, 1987. View at Google Scholar
  15. D. J. O'Shannessy and R. H. Quarles, “Labeling of the oligosaccharide moieties of immunoglobulins,” Journal of Immunological Methods, vol. 99, no. 2, pp. 153–161, 1987. View at Google Scholar · View at Scopus
  16. D. J. O'Shannessy and R. H. Quarles, “Specific conjugation reactions of the oligosaccharide moieties of immunoglobulins,” Journal of Applied Biochemistry, vol. 7, no. 4-5, pp. 347–355, 1985. View at Google Scholar · View at Scopus
  17. C. A.C. Wolfe and D. S. Hage, “Studies on the rate and control of antibody oxidation by periodate,” Analytical Biochemistry, vol. 231, no. 1, pp. 123–130, 1995. View at Publisher · View at Google Scholar
  18. W. L. Hoffman and D. J. O'Shannessy, “Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports,” Journal of Immunological Methods, vol. 112, no. 1, pp. 113–120, 1988. View at Publisher · View at Google Scholar
  19. M. Wang, L. Wang, G. Wang et al., “Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions,” Biosensors and Bioelectronics, vol. 19, no. 6, pp. 575–582, 2004. View at Publisher · View at Google Scholar
  20. S. -Y. Dong, H. -M. Ma, X. -J. Duan, X. -Q. Chen, and J. Li, “Detection of local polarity of α-lactalbumin by N-terminal specific labeling with a new tailor-made fluorescent probe,” Journal of Proteome Research, vol. 4, no. 1, pp. 161–166, 2005. View at Publisher · View at Google Scholar
  21. H. Fukushima and T. Tamaki, “Molecular motion of electrically stimulated self-assembled monolayers on gold surface,” Journal of Physical Chemistry B, vol. 106, no. 29, pp. 7142–7145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chemical Reviews, vol. 105, no. 4, pp. 1103–1169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ulman, “Formation and structure of self-assembled monolayers,” Chemical Reviews, vol. 96, no. 4, pp. 1533–1554, 1996. View at Google Scholar
  24. A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, Academic Press, New York, NY, USA, 1991.
  25. O. Kamm, “Beta=Phenylhydroxylamine,” in Organic Syntheses, A. H. Blatt, Ed., vol. 1, pp. 445–447, John Wiley and Sons, New York, NY, USA, 2nd edition, 1932. View at Google Scholar
  26. P. Ren, T. Dong, and S. Wu, “Synthesis of N-arylhydroxylamines by antimony-catalyzed reduction of nitroarenes,” Synthetic Communications, vol. 27, no. 9, pp. 1547–1552, 1997. View at Google Scholar · View at Scopus
  27. S. Uchida, K. Yanada, H. Yamaguchi, and H. Meguri, “Synthesis of N-Arylhydroxylamines by tellurium-catalyzed reductions of aromatic nitro compounds,” Chemistry Letters, pp. 1069–1070, 1986. View at Google Scholar
  28. K. Yanada, H. Yamaguchi, H. Meguri, and S. Uchida, “Selenium-catalysed reduction of aromatic nitro compounds to N-arylhydroxylamines,” Journal of the Chemical Society, Chemical Communications, no. 22, pp. 1655–1656, 1986. View at Google Scholar · View at Scopus
  29. P. D. Ren, X. W. Pan, Q. H. Jin, and Z. P. Yao, “Reduction of nitroarenes to N-arylhydroxylamines with KBH4/BiCl3 system,” Synthetic Communications, vol. 27, no. 20, pp. 3497–3503, 1997. View at Google Scholar · View at Scopus
  30. N. R. Ayyangar, K. C. Brahme, U. R. Kalkote, and K. V. Srinivasan, “Facile transfer reduction of nitroarenes to N-arylhydroxylamines with hydrazine in the presence of raney nickel,” Synthesis, vol. 22, no. 3, pp. 938–941, 1984. View at Google Scholar · View at Scopus
  31. T. Yoshioka, H. Yamada, and T. Uematsu, “Glycosides of N-hydroxy-N-arylamine derivatives. Part 2. Convenient synthetic methods for N-glycosides of N-hydroxy-N-arylamines,” Journal of the Chemical Society, Perkin Transactions 1, pp. 1271–1276, 1985. View at Google Scholar · View at Scopus
  32. H. Lund, “Cathodic reduction of nitro and related compounds,” in Organic Electrochemistry, H. Lund and O. Hammerich, Eds., pp. 379–409, Marcel Dekker, New York, NY, USA, 4th edition, 2001. View at Google Scholar
  33. H. Tsutsumi, S. Furumoto, M. Morita, and Y. Matsuda, “Electrochemical behavior of a 4-Nitrothiophenol modified electrode prepared by the self-assembly method,” Journal of Colloid And Interface Science, vol. 171, no. 2, pp. 505–511, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS,” Langmuir, vol. 17, no. 11, pp. 3454–3459, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Boyland and R. Nery, “Arylhydroxlamines III: reactions with aldehydes,” Journal of the Chemical Society, vol. 85, no. 14, pp. 3141–3144, 1963. View at Google Scholar · View at Scopus
  36. M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, “Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry,” Journal of the American Chemical Society, vol. 109, no. 12, pp. 3559–3568, 1987. View at Google Scholar · View at Scopus
  37. E. Sabatani, J. Cohen-Boulakia, M. Bruening, and I. Rubinstein, “Thioaromatic monolayers on gold: a new family of self-assembling monolayers,” Langmuir, vol. 9, no. 11, pp. 2974–2981, 1993. View at Google Scholar · View at Scopus
  38. H. C. W. Hays, P. A. Millner, and M. I. Prodromidis, “Development of capacitance based immunosensors on mixed self-assembled monolayers,” Sensors and Actuators, B, vol. 114, no. 2, pp. 1064–1070, 2006. View at Publisher · View at Google Scholar · View at Scopus