Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012 (2012), Article ID 208079, 5 pages
http://dx.doi.org/10.1155/2012/208079
Research Article

Instrument for Label-Free Detection of Noncoding RNAs

1F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Discovery Technologies, 4070 Basel, Switzerland
2CRANN—The Naughton Institute, School of Physics, Trinity College Dublin, Dublin 2, Ireland

Received 15 June 2011; Accepted 11 August 2011

Academic Editor: Maria Tenje

Copyright © 2012 Peter Noy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. McKendry, J. Zhang, Y. Arntz et al., “Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9783–9788, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. F. Huber, N. Backmann, W. Grange, M. Hegner, C. Gerber, and H. P. Lang, “Analyzing gene expression using combined nanomechanical cantilever sensors,” Journal of Physics, vol. 61, no. 1, article 090, pp. 450–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Mertens, C. Rogero, M. Calleja et al., “Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films,” Nature Nanotechnology, vol. 3, no. 5, pp. 301–307, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. Y. Arntz, J. D. Seelig, H. P. Lang et al., “Label-free protein assay based on a nanomechanical cantilever array,” Nanotechnology, vol. 14, no. 1, pp. 86–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Braun, M. K. Ghatkesar, N. Backmann et al., “Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors,” Nature Nanotechnology, vol. 4, no. 3, pp. 179–185, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. Braun, N. Backmann, M. Vögtli et al., “Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors,” Biophysical Journal, vol. 90, no. 8, pp. 2970–2977, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. N. Backmann, C. Zahnd, F. Huber et al., “A label-free immunosensor array using single-chain antibody fragments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14587–14592, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. W. Carthew and E. J. Sontheimer, “Origins and Mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. L. Collins, B. Irvine, D. Tyner et al., “A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml,” Nucleic Acids Research, vol. 25, no. 15, pp. 2979–2984, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Zhang, H. P. Lang, F. Huber et al., “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotechnology, vol. 1, no. 3, pp. 214–220, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. P. Lang, R. Berger, C. Andreoli et al., “Sequential position readout from arrays of micromechanical cantilever sensors,” Applied Physics Letters, vol. 72, no. 3, pp. 383–385, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Meyer and N. M. Amer, “Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope,” Applied Physics Letters, vol. 57, no. 20, pp. 2089–2091, 1990. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Godin, V. Tabard-Cossa, Y. Miyahara et al., “Cantilever-based sensing: the origin of surface stress and optimization strategies,” Nanotechnology, vol. 21, no. 7, Article ID 075501, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. H. P. Lang, M. Hegner, E. Meyer, and C. Gerber, “Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology,” Nanotechnology, vol. 13, no. 5, pp. R29–R36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Braun, F. Huber, M. K. Ghatkesar et al., “Processing of kinetic microarray signals,” Sensors and Actuators, B, vol. 128, no. 1, pp. 75–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Kern, Handbook of Semiconductor Wafer Cleaning Technology—Science, Technology, and Applications, Noyes Publications, 1993.