Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012 (2012), Article ID 561256, 7 pages
http://dx.doi.org/10.1155/2012/561256
Research Article

Ink-Jet Printing: Perfect Tool for Cantilever Array Sensor Preparation for Microbial Growth Detection

CRANN School of Physics, Trinity College Dublin, Dublin, Ireland

Received 15 June 2011; Accepted 22 August 2011

Academic Editor: Maria Tenje

Copyright © 2012 G. Lukacs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. W. Binder, A. J. Allen, J. J. Yoo, and A. Atala, “Drop-on-demand inkjet bioprinting: a primer,” Gene Therapy and Regulation, vol. 6, no. 1, pp. 33–49, 2011. View at Publisher · View at Google Scholar
  2. T. Braun, N. Backmann, A. Bietsch et al., “Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors,” Biophysical Journal, vol. 90, no. 8, pp. 2970–2977, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Braun, M. K. Ghatkesar, N. Backmann et al., “Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors,” Nature Nanotechnology, vol. 4, no. 3, pp. 179–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Okamoto, T. Suzuki, and N. Yamamoto, “Microarray fabrication with covalent attachment of DNA using Bubble Jet technology,” Nature Biotechnology, vol. 18, no. 4, pp. 438–441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Roda, M. Guardigli, C. Russo, P. Pasini, and M. Baraldini, “Protein microdeposition using a conventional ink-jet printer,” BioTechniques, vol. 28, no. 3, pp. 492–496, 2000. View at Google Scholar · View at Scopus
  6. A. Bietsch, J. Zhang, M. Hegner, H. P. Lang, and C. Gerber, “Rapid functionalization of cantilever array sensors by inkjet printing,” Nanotechnology, vol. 15, no. 8, pp. 873–880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Xu, S. Petridou, E. H. Lee et al., “Construction of high-density bacterial colony arrays and patterns by the ink-jet method,” Biotechnology and Bioengineering, vol. 85, no. 1, pp. 29–33, 2003. View at Google Scholar
  8. T. Xu, J. Jin, C. Gregory, J. J. Hickman, and T. Boland, “Inkjet printing of viable mammalian cells,” Biomaterials, vol. 26, no. 1, pp. 93–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Nugaeva, K. Y. Gfeller, N. Backmann et al., “An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores,” Microscopy and Microanalysis, vol. 13, no. 1, pp. 13–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Y. Gfeller, N. Nugaeva, and M. Hegner, “Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli,” Applied and Environmental Microbiology, vol. 71, no. 5, pp. 2626–2631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Ramos, J. Tamayo, J. Mertens, M. Calleja, and A. Zaballos, “Origin of the response of nanomechanical resonators to bacteria adsorption,” Journal of Applied Physics, vol. 100, no. 10, Article ID 106105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Y. Gfeller, N. Nugaeva, and M. Hegner, “Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli,” Biosensors and Bioelectronics, vol. 21, no. 3, pp. 528–533, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Nugaeva, K. Y. Gfeller, N. Backmann, H. P. Lang, M. Düggelin, and M. Hegner, “Nanomechanical cantilever array sensors for selective fungal immobilization and real-time growth detection,” Biosensors and Bioelectronics, vol. 21, pp. 849–856, 2005. View at Google Scholar
  14. I. A. Cleary, P. Mulabagal, S. M. Reinhard et al., “Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans,” Eukaryotic Cell, vol. 9, no. 9, pp. 1363–1373, 2010. View at Publisher · View at Google Scholar