Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012, Article ID 580939, 7 pages
http://dx.doi.org/10.1155/2012/580939
Research Article

An Astigmatic Detection System for Polymeric Cantilever-Based Sensors

1Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
2Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
3Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Lyngby, Denmark

Received 15 July 2011; Accepted 20 August 2011

Academic Editor: Martin Hegner

Copyright © 2012 En-Te Hwu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Fritz, “Cantilever biosensors,” Analyst, vol. 133, no. 7, pp. 855–863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Singamaneni, M. C. LeMieux, H. P. Lang et al., “Bimaterial microcantilevers as a hybrid sensing platform,” Advanced Materials, vol. 20, no. 4, pp. 653–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab on a Chip, vol. 7, no. 10, pp. 1238–1255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Fritz, M. K. Baller, H. P. Lang et al., “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, no. 5464, pp. 316–318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. W. Ndieyira, M. Watari, A. D. Barrera et al., “Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance,” Nature Nanotechnology, vol. 3, no. 11, pp. 691–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Review of Scientific Instruments, vol. 75, no. 7, pp. 2229–2253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Alexander, L. Hellemans, O. Marti et al., “An atomic-resolution atomic-force microscope implemented using an optical lever,” Journal of Applied Physics, vol. 65, no. 1, pp. 164–167, 1989. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Blanc, J. Brugger, N. F. De Rooij, and U. Dürig, “Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors,” Journal of Vacuum Science and Technology B, vol. 14, no. 2, pp. 901–905, 1996. View at Google Scholar · View at Scopus
  9. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Applied Physics Letters, vol. 62, no. 8, pp. 834–836, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Itoh and T. Suga, “Development of a force sensor for atomic force microscopy using piezoelectric thin films,” Nanotechnology, vol. 4, no. 4, article 007, pp. 218–224, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramicroscopy, vol. 97, no. 1–4, pp. 371–376, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sensors and Actuators, B, vol. 79, no. 2-3, pp. 115–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Alvarez, A. Calle, J. Tamayo, L. M. Lechuga, A. Abad, and A. Montoya, “Development of nanomechanical biosensors for detection of the pesticide DDT,” Biosensors and Bioelectronics, vol. 18, no. 5-6, pp. 649–653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E.-T. Hwu, S.-K. Hung, C.-W. Yang, I.-S. Hwang, and K.-Y. Huang, “Simultaneous detection of translational and angular displacements of micromachined elements,” Applied Physics Letters, vol. 91, no. 22, Article ID 221908, 2007. View at Publisher · View at Google Scholar
  15. M. Nordström, S. Keller, M. Lillemose et al., “SU-8 cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods,” Sensors, vol. 8, no. 3, pp. 1595–1612, 2008. View at Google Scholar · View at Scopus
  16. F. G. Bosco, E. T. Hwu, C. H. Chen et al., “High throughput label-free platform for statistical bio-molecular sensing,” Lab on a Chip, vol. 11, no. 14, pp. 2411–2416, 2011. View at Google Scholar
  17. E.-T. Hwu, S.-K. Hung, C.-W. Yang, K.-Y. Huang, and I.-S. Hwang, “Real-time detection of linear and angular displacements with a modified DVD optical head,” Nanotechnology, vol. 19, no. 11, Article ID 115501, 2008. View at Publisher · View at Google Scholar
  18. G. A. Matei, E. J. Thoreson, J. R. Pratt, D. B. Newell, and N. A. Burnahm, “Precision and accuracy of thermal calibration of atomic force microscopy cantilevers,” Review of Scientific Instruments, vol. 77, Article ID 083703, 6 pages, 2006. View at Publisher · View at Google Scholar
  19. S. S. Keller, L. Gammelgaard, M. P. Jensen, S. Schmid, Z. J. Davis, and A. Boisen, “Deposition of biopolymer films on micromechanical sensors,” Microelectronic Engineering, vol. 88, no. 8, pp. 2297–2299, 2011. View at Publisher · View at Google Scholar
  20. N. Jung, H. Seo, D. Lee, C. Y. Ryu, and S. Jeon, “Nanomechanical thermal analysis of the glass transition of polystyrene using silicon cantilevers,” Macromolecules, vol. 41, no. 19, pp. 6873–6875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Yamashita, Y. Kikkawa, K. Kurokawa, and Y. Doi, “Enzymatic degradation of poly(L-lactide) film by proteinase K: quartz crystal microbalance and atomic force microscopy study,” Biomacromolecules, vol. 6, no. 2, pp. 850–857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Feng and R. J. Farris, “The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating,” Journal of Materials Science, vol. 37, no. 22, pp. 4793–4799, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Hopcroft, T. Kramer, G. Kim et al., “Micromechanical testing of SU-8 cantilevers,” Fatigue and Fracture of Engineering Materials and Structures, vol. 28, no. 8, pp. 735–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Länge, G. Blaess, A. Voigt, R. Götzen, and M. Rapp, “Integration of a surface acoustic wave biosensor in a microfluidic polymer chip,” Biosensors and Bioelectronics, vol. 22, no. 2, pp. 227–232, 2006. View at Publisher · View at Google Scholar · View at Scopus