Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012 (2012), Article ID 582028, 10 pages
Research Article

Evaluation of a Reduced Cost Active NDVI Sensor for Crop Nutrient Management

1Department of Plant and Soil Sciences, Oklahoma State University, 044 Agricultural Hall, Stillwater, OK 74078, USA
2CIMMYT, Int., Apdo. Postal 6-641, 06600 Mexico City, DF, Mexico

Received 24 July 2012; Accepted 4 December 2012

Academic Editor: Pietro Siciliano

Copyright © 2012 Jared Crain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


There are methods to increase fertilizer nitrogen use efficiency through optical sensor-based nitrogen application; however, the sensors are expensive and cost prohibitive to farmers in the developing world. This study evaluated a novel, reduced cost, prototype, and optical sensor to determine if it could be used with the same level of accuracy as a commercial sensor. The stability of the prototype sensor (pocket sensor) to maintain an accurate calibration over time, the effect of operator on sensor readings, and sensor performance in maize and wheat were assessed. Evaluation of the sensor performance was conducted in existing wheat and maize trials, as well as turf grass canopies at the International Maize and Wheat Improvement Center, Ciudad Obregon, Mexico.The prototype sensors were highly correlated to the commercial GreenSeeker NDVI sensor in turf grass, wheat, and maize canopies (, , and , resp.). The Pocket Sensors lacked some precision in comparison to the commercial sensor; however, even with the reduced precision, the cost of the sensor and robustness of N fertilizer algorithms compensate for this apparent weakness. The pocket sensor is a new and viable tool to assess wheat and maize nitrogen status and make nitrogen recommendations based upon the data collected with this sensor.