Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012, Article ID 680383, 9 pages
Research Article

Envelope and Wavelet Transform for Sound Localisation at Low Sampling Rates in Wireless Sensor Networks

School of Electrical, Electronic and Computer Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Received 15 November 2011; Revised 12 January 2012; Accepted 15 January 2012

Academic Editor: Shenfang Yuan

Copyright © 2012 O. M. Bouzid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


High sampling frequencies in acoustic wireless sensor network (AWSN) are required to achieve precise sound localisation. But they are also mean analysis time and memory intensive (i.e., huge data to be processed and more memory space to be occupied which form a burden on the nodes limited resources). Decreasing sampling rates below Nyquist criterion in acoustic source localisation (ASL) applications requires development of the existing time delay estimation techniques in order to overcome the challenge of low time resolution. This work proposes using envelope and wavelet transform to enhance the resolution of the received signals through the combination of different time-frequency contents. Enhanced signals are processed using cross-correlation in conjunction with a parabolic fit interpolation to calculate the time delay accurately. Experimental results show that using this technique, estimation accuracy was improved by almost a factor of 5 in the case of using 4.8 kHz sampling rate. Such a conclusion is useful for developing precise ASL without the need of any excessive sensor resources, particularly for structural health monitoring applications.