Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2013 (2013), Article ID 101820, 8 pages
http://dx.doi.org/10.1155/2013/101820
Research Article

Robust Modeling of Low-Cost MEMS Sensor Errors in Mobile Devices Using Fast Orthogonal Search

1Electrical and Computer Engineering Department, Queen’s University, Kingston, ON, Canada K7L 3N6
2Electrical and Computer Engineering Department, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4

Received 4 February 2013; Accepted 23 May 2013

Academic Editor: Xiaoji Niu

Copyright © 2013 M. Tamazin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Noureldin, T. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration, Springer, New York, NY, USA, 2012.
  2. M. Grewal, L. Weil, and A. Andrews, Global Positioning Systems, Inertial Navigation and Integration, John Wiley & Sons, New York, NY, USA, 2nd edition, 2007.
  3. S. Nassar, K. Schwarz, N. El-Sheimy, and A. Noureldin, “Modeling inertial sensor errors using autoregressive (AR) models,” Navigation, Journal of the Institute of Navigation, vol. 51, no. 4, pp. 259–268, 2004. View at Google Scholar · View at Scopus
  4. J. Georgy and A. Noureldin, “Vehicle navigator using a mixture particle filter for inertial sensors/odometer/map data/GPS integration,” IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 544–522, 2012. View at Publisher · View at Google Scholar
  5. M. J. Korenberg, “A robust orthogonal algorithm for system identification and time-series analysis,” Biological Cybernetics, vol. 60, no. 4, pp. 267–276, 1989. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Korenberg, “Fast orthogonal identification of nonlinear difference equation models,” in Proceedings of the 30th Midwest Symposium on Circuits and Systems, vol. 1, August 1987.
  7. J. Armstrong, A. Noureldin, and D. McGaughey, “Application of fast orthogonal search techniques to accuracy enhancement of inertial sensors for land vehicle navigation,” in Proceedings of the Institute of Navigation, National Technical Meeting (NTM '06), pp. 604–614, Monterey, Calif, USA, January 2006. View at Scopus
  8. A. Noureldin, A. Osman, and N. El-Sheimy, “A neuro-wavelet method for multi-sensor system integration for vehicular navigation,” Measurement Science and Technology, vol. 15, no. 2, pp. 404–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Nassar, A. Noureldin, and N. El-Sheimy, “Improving positioning accuracy during kinematic DGPS outage periods using SINS/DGPS integration and SINS data de-noising,” Survey Review, vol. 37, no. 292, pp. 426–438, 2004. View at Google Scholar · View at Scopus
  10. K. M. Adeney and M. J. Korenberg, “Fast orthogonal search for array processing and spectrum estimation,” IEE Proceedings: Vision, Image and Signal Processing, vol. 141, no. 1, pp. 13–18, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Korenberg, “Fast orthogonal algorithms for nonlinear system identification and time-series analysis,” in Advanced Methods of Physiological System Modeling, V. Z. Marmarelis, Ed., vol. 2, pp. 165–177, Plenum Press, New York, NY, USA, 1989. View at Google Scholar
  12. D. R. McGaughey, M. J. Korenberg, K. M. Adeney, S. D. Collins, and G. J. M. Aitken, “Using the fast orthogonal search with first term reselection to find subharmonic terms in spectral analysis,” Annals of Biomedical Engineering, vol. 31, no. 6, pp. 741–751, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Shen, J. Georgy, M. J. Korenberg, and A. Noureldin, “FOS-based modelling of reduced inertial sensor system errors for 2D vehicular navigation,” Electronics Letters, vol. 46, no. 4, pp. 298–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, NJ, USA, 2002.
  15. L. Jackson, Digital Filters and Signal Processing, Kluwer Academic, Norwell, Mass, USA, 1996.
  16. R. Kless and P. Broersen, How to Handle Colored Noise in Large Least-Squares Problems, Delft University of Technology, Delft, The Netherlands, 2002.
  17. M. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley & Sons, New York, NY, USA, 1996.
  18. M. J. L. de Hoon, T. H. J. J. van der Hagen, H. Schoonewelle, and H. van Dam, “Why Yule-Walker should not be used for autoregressive modelling,” Annals of Nuclear Energy, vol. 23, no. 15, pp. 1219–1228, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Burg, Maximum entropy spectral analysis [Ph.D. thesis], Department of Geophysics, Stanford University, Stanford Calif, USA, 1975.
  20. S. Orfanidis, Optimum Signal Processing: An Introduction, Macmillan, New York, NY, USA, 1988.
  21. J. M. Pimbley, “Recursive autoregressive spectral estimation by minimization of the free energy,” IEEE Transactions on Signal Processing, vol. 40, no. 6, pp. 1518–1527, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Marple, Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs, NJ, USA, 1987.
  23. I. A. Rezek and S. J. Roberts, “Parametric model order estimation: a brief review,” in Proceedings of the IEE Colloquium on the Use of Model Based Digital Signal Processing Techniques in the Analysis of Biomedical Signals, London, UK, April 1997. View at Scopus
  24. E. Ifeachor and B. Jervis, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, USA, 4th edition, 2001.
  25. K. H. Chon, “Accurate identification of periodic oscillations buried in white or colored noise using fast orthogonal search,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 6, pp. 622–629, 2001. View at Publisher · View at Google Scholar · View at Scopus