Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2014, Article ID 673179, 12 pages
http://dx.doi.org/10.1155/2014/673179
Research Article

Implementation of Mobile Target Positioning Technology Integrating SINS with WSN Measurements

School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Received 19 April 2014; Revised 12 August 2014; Accepted 20 August 2014; Published 1 September 2014

Academic Editor: Andrea Cusano

Copyright © 2014 Chengming Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. S. Yaakov, Multitarget/Multisensor Tracking: Applications and Advances, Artech House, 1995.
  2. H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Transactions on Systems, Man and Cybernetic C: Applications and Reviews, vol. 37, no. 6, pp. 1067–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. M. Luo, W. Li, H. Yang, M. B. Fan, and X. F. Yang, “Mobile target positioning using refining distance measurements with inaccurate anchor nodes in chain-type wireless sensor networks,” Mobile Networks and Applications, vol. 19, no. 3, pp. 363–381, 2014. View at Google Scholar
  4. A. Noureldin, T. B. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration, Springer, 2013.
  5. Z. Lü, D. Liu, and C.-G. Li, “The precise positioning system of the mine personnel in coal pit based on strapdown inertial navigation,” Journal of the China Coal Society, vol. 34, no. 8, pp. 1149–1152, 2009. View at Google Scholar · View at Scopus
  6. F. Hoflinger, J. Muller, R. Zhang, L. M. Reindl, and W. Burgard, “A wireless micro inertial measurement unit (IMU),” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 9, pp. 2583–2595, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Li, J. Georgy, J. Zhao, and A. Noureldin, “Testing a new integrated solution for MEMS inertial measurement unit used for measurement-while-drilling in rotary steerable system,” Sensor Letters, vol. 10, no. 3-4, pp. 719–725, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Morrison, V. Renaudin, J. B. Bancroft, and G. Lachapelle, “Design and testing of a multi-sensor pedestrian location and navigation platform,” Sensors, vol. 12, no. 3, pp. 3720–3738, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Li, M. Efatmaneshnik, and A. G. Dempster, “Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications,” GPS Solutions, vol. 16, no. 1, pp. 41–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 6–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Mazuelas, A. Bahillo, R. M. Lorenzo et al., “Robust indoor positioning provided by real-time rssi values in unmodified WLAN networks,” IEEE Journal on Selected Topics in Signal Processing, vol. 3, no. 5, pp. 821–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp. 1905–1915, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-A. Jiang, X.-Y. Zheng, Y.-F. Chen et al., “A distributed rss-based localization using a dynamic circle expanding mechanism,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3754–3766, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. W. Zhang, A. K. Brown, W. Q. Malik, and D. J. Edwards, “High resolution 3-D angle of arrival determination for indoor UWB multipath propagation,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3047–3055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Zoghi and M. H. Kahaei, “Sensor selection for target tracking in WSN using Modified INS algorithm,” in Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications (ICTTA '08), pp. 1–6, Damascus, Syria, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. B. Zhu, X. B. Li, X. B. Li, and G. X. Qin, “Integration of inertial navigation system and wireless sensor network for mine environment,” in Proceedings of the 2nd International Symposium on Test Automation and Instrumentation, pp. 1857–1860, Beijing, China, November 2008.
  17. C. Ascher, L. Zwirello, T. Zwick, and G. Trommer, “Integrity monitoring for UWB/INS tightly coupled pedestrian indoor scenarios,” in Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN '11), pp. 1–6, Guimar, Spain, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Hol, F. Dijkstra, H. Luinge, and T. B. Schöny, “Tightly coupled UWB/IMU pose estimation,” in Proceedings of the IEEE International Conference on Ultra-Wideband, pp. 9–11, Vancouver, Canada, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. de Angelis, J. O. Nilsson, I. Skog, P. Händel, and P. Carbone, “Indoor positioning by ultrawide band radio aided inertial navigation,” Metrology and Measurement Systems, vol. 17, no. 3, pp. 447–460, 2010. View at Google Scholar · View at Scopus
  20. K. Zhang, M. Zhu, G. Retscher, F. Wu, and W. Cartwright, “Three-dimension indoor positioning algorithms using an integrated RFID/INS system in multi-storey buildings,” in Location Based Services and TeleCartography II, pp. 373–386, 2009. View at Google Scholar
  21. Q. G. Fan, W. Li, and C. M. Luo, “Error analysis and reduction for shearer positioning using the strapdown inertial navigation system,” International Journal of Computer Science Issues, vol. 9, no. 5, pp. 49–54, 2012. View at Google Scholar
  22. M. Sotak, “Testing the coarse alignment algorithm using rotation platform,” Acta Polytechnica Hungarica, vol. 7, no. 5, pp. 87–107, 2010. View at Google Scholar · View at Scopus
  23. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, New York, NY, USA, 2001.
  24. T. Jia and R. M. Buehrer, “On the optimal performance of collaborative position location,” IEEE Transactions on Wireless Communications, vol. 9, no. 1, pp. 374–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Julier and J. K. Uhlmann, A General Method for Approximating Nonlinear Transformations of Probability Distributions, Department of Engineering Science, University of Oxford, 1996.
  26. S.-M. Chow, E. Ferrer, and J. R. Nesselroade, “An unscented kalman filter approach to the estimation of nonlinear dynamical systems models,” Multivariate Behavioral Research, vol. 42, no. 2, pp. 283–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Song, V. Shin, and M. Jeon, “Mobile node localization using fusion prediction-based interacting multiple model in cricket sensor network,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4349–4359, 2012. View at Publisher · View at Google Scholar · View at Scopus