Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016, Article ID 1630695, 12 pages
http://dx.doi.org/10.1155/2016/1630695
Review Article

Biosensors Used for Quantification of Nitrates in Plants

CA Ingeniería de Biosistemas (Biosystems Engineering Group), División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, S/N, 76010 Santiago de Queretaro, QRO, Mexico

Received 8 October 2015; Revised 21 December 2015; Accepted 22 December 2015

Academic Editor: Chenzhong Li

Copyright © 2016 Romero-Galindo Raul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. V. Sinfield, D. Fagerman, and O. Colic, “Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils,” Computers and Electronics in Agriculture, vol. 70, no. 1, pp. 1–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Taiz and E. Zeiger, Plant Physiology, Sinauer Associates Inc, Sunderland, Mass, USA, 2010.
  3. M. Barrios, J. Garcia, and C. Basso, “Efecto de la fertilización nitrogenada sobre el contenido de nitrato y amonio en el suelo y la planta de maíz,” Bioagro, vol. 23, no. 3, pp. 213–220, 2012. View at Google Scholar
  4. N. Vigneau, M. Ecarnot, G. Rabatel, and P. Roumet, “Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat,” Field Crops Research, vol. 122, no. 1, pp. 25–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Boudsocq, A. Niboyet, J. C. Lata et al., “Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning?” The American Naturalist, vol. 180, no. 1, pp. 60–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. Parks, D. E. Irving, and P. J. Milham, “A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables,” Scientia Horticulturae, vol. 134, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. F. Muñoz-Huerta, R. G. Guevara-Gonzalez, L. M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R. V. Ocampo-Velazquez, “A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances,” Sensors, vol. 13, no. 8, pp. 10823–10843, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Thompson, F. M. Padilla, M. Peña-Fleitas, M. Gallardo, and M. M. Fernández Fernández, “Uso de sistemas de análisis rápidos para mejorar el manejo del nitrógeno en cultivos hortícolas,” 2014, http://www.interempresas.net/Horticola/Articulos/130279-Uso-sistemas-analisis-rapidos-para-mejorar-manejo-del-nitrogeno-cultivos-horticolas.html.
  9. B. J. Zebarth, C. F. Drury, N. Tremblay, and A. N. Cambouris, “Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: a review,” Canadian Journal of Soil Science, vol. 89, no. 2, pp. 113–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Taylor, L. A. Bain, D. J. Richardson, S. Spiro, and D. A. Russell, “Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate,” Analytical Biochemistry, vol. 328, no. 1, pp. 60–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Chang-Hun, “Experimental note: recombinant green fluorescent protein derivatives as a fusion tag for in vitro experiments,” Interdisciplinary Bio Central, vol. 1, pp. 1–15, 2009. View at Google Scholar
  12. C. Fernandez, B. Domingo, F. Picazo, P. Tranque, and J. Llopis, “Análisis de la dinámica celular con proteínas fluorescentes,” Universidad de Castilla La Mancha, Revista Científica de Divulgación, no. 5, 2006. View at Google Scholar
  13. A. Cheng Vollmer and T. K. Van Dyk, “Stress responsive bacteria: biosensors as environmental monitors,” Advances in Microbial Physiology, vol. 49, pp. 131–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Y. Kim, K. A. Sudduth, S. A. Grant, and N. R. Kitchen, “Disposable nitrate-selective optical sensor based on fluorescent dye,” Journal of Biosystems Engineering, vol. 37, no. 3, pp. 209–213, 2012. View at Publisher · View at Google Scholar
  15. E. Brambilla, N. Kloster, A. Bono, and J. Camiña, “Evaluación de métodos para determinar nitrato en suelo,” Ciencia del Suelo, vol. 31, no. 2, pp. 245–252, 2013. View at Google Scholar
  16. F. Di Gioia, E. H. Simonne, M. Gonnella, P. Santamaria, A. Gazula, and Z. Sheppard, “Assessment of ionic interferences to nitrate and potassium analyses with ion-selective electrodes,” Communications in Soil Science and Plant Analysis, vol. 41, no. 14, pp. 1750–1768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. T. Niguyen and D. E. Angeles, “Foliar sap NO3-N in pineapple [Ananas comosus (L.) Merr.] at varying N levels and its relation with dry matter yield,” Asia Life Sciences, vol. 21, no. 2, pp. 609–623, 2012. View at Google Scholar
  18. R. L. Rorie, L. C. Purcell, M. Mozaffari et al., “Association of ‘Greenness’ in corn with yield and leaf nitrogen concentration,” Agronomy Journal, vol. 103, no. 2, pp. 529–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Rostami, A. R. Koocheti, M. N. Mahallati, and M. Kafi, “Evaluation of chlorophyll meter (SPAD) data for prediction of nitrogen status in corn (Zea mays L.),” American-Eurasian Journal of Agricultural and Environmental Science, vol. 3, no. 1, pp. 79–85, 2008. View at Google Scholar
  20. Z. A. Liu, J. P. Yang, and Z. C. Yang, “Using a chlorophyll meter to estimate tea leaf chlorophyll and nitrogen contents,” Journal of Soil Science and Plant Nutrition, vol. 12, no. 2, pp. 339–348, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Huber, I. Klimant, C. Krause, T. Werner, and O. S. Wolfbeis, “Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye,” Analytica Chimica Acta, vol. 449, no. 1-2, pp. 81–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Dudwadkar, N. Shenoy, J. M. Joshi, S. D. Kumar, H. Rao, and A. V. R. Reddy, “Application of ion chromatography for the determination of nitrate in process streams of thermal denitration plant,” Separation Science and Technology, vol. 48, no. 16, pp. 2425–2430, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. G. K. Knof and A. S. Bassi, Smart Sensor Technology, Optical Science and Engineering, CRC Press, New York, NY, USA, 2006.
  24. A. Sadanandom and R. M. Napier, “Biosensors in plants,” Current Opinion in Plant Biology, vol. 13, no. 6, pp. 736–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Jin-Min, C. Ming-Chung, L. L. Huang et al., “The blue fluorescent protein from Vibrio vulnificus CKM-1 is a useful reporter for plant research,” Botanical Studies, vol. 55, article 79, 2014. View at Publisher · View at Google Scholar
  26. M. Kato, J. Z. Zhang, N. Paul, and E. Reisner, “Protein film photoelectrochemistry of the water oxidation enzyme photosystem II,” Chemical Society Reviews, vol. 43, no. 18, pp. 6485–6497, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Herrero, A. M. Muro-Pastor, and E. Flores, “Nitrogen control in cyanobacteria,” Journal of Bacteriology, vol. 183, no. 2, pp. 411–425, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Bren, Y. Hart, E. Dekel, D. Koster, and U. Alon, “The last generation of bacterial growth in limiting nutrient,” BMC Systems Biology, vol. 7, no. 1, article 27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Muñoz-Martín, P. Mateo, F. Leganés, and F. Fernández-Piñas, “A battery of bioreporters of nitrogen bioavailability in aquatic ecosystems based on cyanobacteria,” Science of the Total Environment, vol. 475, pp. 169–179, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Aichi, S.-I. Maeda, K. Ichikawa, and T. Omata, “Nitrite-responsive activation of the nitrate assimilation operon in cyanobacteria plays an essential role in up-regulation of nitrate assimilation activities under nitrate-limited growth conditions,” Journal of Bacteriology, vol. 186, no. 10, pp. 3224–3229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. A. Acton, Issues in Life Science—Bacteriology, Parasitology and Virology, Scholary Editions, Atlanta, Ga, USA, 2012.
  32. E. L. von der Heyde, B. Klein, L. Abram, and A. Hallmann, “The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri,” BMC Biotechnology, vol. 15, no. 1, article 5, 2015. View at Publisher · View at Google Scholar
  33. R. Dobson, J. EdwardsHicks, R. Gritton et al., Characterization of a Rationally Engineered Nitric Oxide, Nitrate and Nitrite Biosensor Linked to a Hybrid Bacterialmammalian, School of Biological Sciences, Wokingham, UK, 2015.
  34. B. P. H. Pulsen, L. Hansen, and S. J. Sorensen, “Biosensors to monitor soil health or toxicity,” in Modern Soil Microbiology, J. D. van Elsas, J. K. Jansson, and J. T. Trevors, Eds., CRC Press, Boca Raton, Fla, USA, 2007. View at Google Scholar
  35. K. M. Polizzi and C. Kontoravdi, “Genetically-encoded biosensors for monitoring cellular stress in bioprocessing,” Current Opinion in Biotechnology, vol. 31, pp. 50–56, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ravikumar, I. Ganesh, I.-K. Yoo, and S. H. Hong, “Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria,” Process Biochemistry, vol. 47, no. 5, pp. 758–765, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. B. W. Matthews, “The structure of E. coliβ-galactosidase,” Comptes Rendus Biologies, vol. 328, no. 6, pp. 549–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. I. G. Serebriiskii and E. A. Golemis, “Uses of lacZ to study gene function: evaluation of β-galactosidase assays employed in the yeast two-hybrid system,” Analytical Biochemistry, vol. 285, no. 1, pp. 1–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. Tessaro, Cell bacterial biosensor for glutamine and applications to plants and microbes [Doctoral Dissertation], University of Guelph, Guelph, Canada, 2012.
  40. J. Engebrecht, M. Simon, and M. Silverman, “Measuring gene expression with light,” Science, vol. 227, no. 4692, pp. 1345–1347, 1985. View at Publisher · View at Google Scholar · View at Scopus
  41. S. E. Lindow, “The role of bacterial ICE nucleation in frost injury to plants,” Annual Review of Phytopathology, vol. 21, no. 1, pp. 363–384, 1983. View at Publisher · View at Google Scholar
  42. K. M. DeAngelis, P. Ji, M. K. Firestone, and S. E. Lindow, “Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 8537–8547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia, vol. 2, no. 1-2, pp. 41–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Y. Franco and M. Longart, “Aplicaciones de la proteína verde fluorescente (GFP) en la biología celular y en la visualización del sistema nervioso,” Redalyc, vol. 1, no. 2, pp. 84–96, 2009. View at Google Scholar
  45. M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington, “Crystal structure of the Aequorea victoria green fluorescent protein,” Science, vol. 273, no. 5280, pp. 1392–1395, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Bren, Y. Hart, E. Dekel, D. Koster, and U. Alon, “The last generation of bacterial growth in limiting nutrient,” BMC Systems Biology, vol. 7, article 27, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. D. E. Crone, C. Schenkelberg, C. Bystroff et al., “GFP-based biosensors,” in State of the Art in Biosensors—General Aspects, InTech Open Access, 2013. View at Google Scholar
  48. R. Y. Tsien, “The green fluorescent protein,” Annual Review of Biochemistry, vol. 67, pp. 509–544, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. K.-C. Chen, C.-Y. Chen, J. W. Peng, and J.-Y. Houng, “Real-time control of an immobilized-cell reactor for wastewater treatment using ORP,” Water Research, vol. 36, no. 1, pp. 230–238, 2002. View at Publisher · View at Google Scholar
  50. R. Fernando-Ochoa, J. Osuna-Castro, C. V. Velazque-Mendoza, P. Escalante-Minakata, and V. Ibarra-Junquera, “Inmovilización de células y enzimas,” Revista Cientifica de la Universidad Autonoma de Coahuila, vol. 3, no. 6, pp. 42–56, 2011. View at Google Scholar
  51. P. S. J. Cheetham, K. W. Blunt, and C. Bocke, “Physical studies on cell immobilization using calcium alginate gels,” Biotechnology and Bioengineering, vol. 21, no. 12, pp. 2155–2168, 1979. View at Publisher · View at Google Scholar
  52. H. J. Kong, M. K. Smith, and D. J. Mooney, “Designing alginate hydrogels to maintain viability of immobilized cells,” Biomaterials, vol. 24, no. 22, pp. 4023–4029, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. Burdette and Cardon, “Development of a new generation of sensitive, fluorescence-based nitrate sensors for use in soil and water,” Report as of FY2008 for 2007CT130B, Project 2007CT130B, 2008.
  54. J. F. Pavoni, W. F. Neves-Junior, M. A. Spiropulos, D. Ara, and D. Araúujo, “Uma montagem experimental para a medida de fluorescencia,” Revista Brasileira de Ensino de Física, vol. 36, no. 4, p. 4501, 2014. View at Publisher · View at Google Scholar
  55. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, Germany, 2001.
  56. H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen, “Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM,” Molecules, vol. 17, no. 4, pp. 4047–4132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Becker, “Fluorescence lifetime imaging—techniques and applications,” Journal of Microscopy, vol. 247, no. 2, pp. 119–136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Y. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, no. 5148, pp. 802–805, 1994. View at Publisher · View at Google Scholar · View at Scopus
  59. L. M. Contreras-Medina, Procesamiento de imágenes con FPGA para el modelado cuantitativo del síndrome del virus mosaico del pepino en Cucumis sativus [Tesis de Doctorado], Universidad Autonoma de Querétaro, 2012.
  60. S. M. A. Cuevas, Diseño de un Sistema de Procesamieno para Correlación y Espectrometría en Radioastronomía, Basado en ASIC y FPGA, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, 2010.
  61. J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “An LED-based fluorometer for chlorophyll quantification in the laboratory and in the field,” Photosynthesis Research, vol. 114, no. 1, pp. 59–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. H.-J. Yoon and S. Kawahito, “A CMOS image sensor for fluorescence lifetime imaging,” in Proceedings of the 5th IEEE Conference on Sensors, vol. 22, pp. 400–403, Daegu, South Korea, October 2006. View at Publisher · View at Google Scholar · View at Scopus