Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016, Article ID 2353517, 12 pages
http://dx.doi.org/10.1155/2016/2353517
Research Article

Piezoelectric Wind Energy Harvesting from Self-Excited Vibration of Square Cylinder

1College of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450002, China
2Jiangsu Engineering Research Center on Meteorological Energy Using and Control, Nanjing University of Information Science & Technology, Nanjing 210000, China
3Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education of China, Chongqing 400044, China
4College of Engineering, South China Agricultural University, Guangzhou, Guangdong 510642, China
5School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
6Shipping and Marine Engineering College, Chongqing Jiao Tong University, Chongqing 40074, China
7Power Engineering School, Chongqing University, Chongqing 400044, China

Received 4 January 2016; Revised 27 April 2016; Accepted 8 May 2016

Academic Editor: Chengkuo Lee

Copyright © 2016 Junlei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Alippi, R. Camplani, C. Galperti, and M. Roveri, “A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring,” IEEE Sensors Journal, vol. 11, no. 1, pp. 45–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless sensors and wireless sensor networks,” in Proceedings of the 20th IEEE International Symposium on Intelligent Control (ISIC '05) and the13th Mediterranean Conference on Control and Automation (MED '05), pp. 719–724, Limassol, Cyprus, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Brunelli, C. Moser, L. Thiele, and L. Benini, “Design of a solar-harvesting circuit for batteryless embedded systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 11, pp. 2519–2528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. W. K. G. Seah, Z. A. Eu, and H.-P. Tan, “Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)—survey and challenges,” in Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE '09), pp. 1–5, Aalborg, Denmark, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Werner-Allen, K. Lorincz, M. Welsh et al., “Deploying a wireless sensor network on an active volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. D. Blevins, “Flow-induced vibration,” 1990.
  8. G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers, and T. R. Welsh, “The energy harvesting Eel: a small subsurface ocean/river power generator,” IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 539–547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Allen and A. J. Smits, “Energy harvesting EEL,” Journal of Fluids and Structures, vol. 15, no. 3-4, pp. 629–640, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. W. P. Robbins, I. Marusic, D. Morris, and T. O. Novak, “Wind-generated electrical energy using flexible piezoelectric mateials,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 581–590, Chicago, Ill, USA, November 2006.
  11. K. Raghavan and M. M. Bernitsas, “Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports,” Ocean Engineering, vol. 38, no. 5-6, pp. 719–731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Lee and M. M. Bernitsas, “High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter,” Ocean Engineering, vol. 38, no. 16, pp. 1697–1712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Wu, M. M. Bernitsas, and K. Maki, “RANS simulation vs. experiments of flow induced motion of circular cylinder with passive turbulence control at 35,000<Re<130,000,” in Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, pp. 733–744, American Society of Mechanical Engineers, Rotterdam, Netherlands, June 2011. View at Publisher · View at Google Scholar
  14. L. Ding, M. M. Bernitsas, and E. S. Kim, “2-D URANS vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30,000<Re<105,000,” Ocean Engineering, vol. 72, pp. 429–440, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Mehmood, A. Abdelkefi, M. R. Hajj, A. H. Nayfeh, I. Akhtar, and A. O. Nuhait, “Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder,” Journal of Sound and Vibration, vol. 332, no. 19, pp. 4656–4667, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, “Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1377–1388, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, “Piezoelectric energy harvesting from transverse galloping of bluff bodies,” Smart Materials and Structures, vol. 22, no. 1, Article ID 015014, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, “Power harvesting from transverse galloping of square cylinder,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1355–1363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Barrero-Gil, G. Alonso, and A. Sanz-Andres, “Energy harvesting from transverse galloping,” Journal of Sound and Vibration, vol. 329, no. 14, pp. 2873–2883, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Abdelkefi and A. O. Nuhait, “Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters,” Smart Materials and Structures, vol. 22, no. 9, Article ID 095029, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. H. L. Dai, A. Abdelkefi, and L. Wang, “Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations,” Nonlinear Dynamics, vol. 77, no. 3, pp. 967–981, 2014. View at Publisher · View at Google Scholar
  22. Z. Yan and A. Abdelkefi, “Nonlinear characterization of concurrent energy harvesting from galloping and base excitations,” Nonlinear Dynamics, vol. 77, no. 4, pp. 1171–1189, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. J. P. den Hartog, Mechanical Vibrations, Dover, Mineola, NY, USA, 1956.
  24. G. Parkinson, “Mathematical models of flow-induced vibrations of bluff bodies,” in Flow-Induced Structural Vibrations, pp. 81–127, Springer, Berlin, Germany, 1974. View at Google Scholar
  25. G. V. Parkinson and J. D. Smith, “The square prism as an aeroelastic non-linear oscillator,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 17, no. 2, pp. 225–239, 1964. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Barrero-Gil, A. Sanz-Andrés, and G. Alonso, “Hysteresis in transverse galloping: the role of the inflection points,” Journal of Fluids and Structures, vol. 25, no. 6, pp. 1007–1020, 2009. View at Publisher · View at Google Scholar · View at Scopus