Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016, Article ID 8046529, 7 pages
Research Article

Night-Time Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning

1School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

Received 3 July 2016; Revised 23 September 2016; Accepted 25 October 2016

Academic Editor: Fadi Dornaika

Copyright © 2016 Yingfeng Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Night vision systems get more and more attention in the field of automotive active safety field. In this area, a number of researchers have proposed far-infrared sensor based night-time vehicle detection algorithm. However, existing algorithms have low performance in some indicators such as the detection rate and processing time. To solve this problem, we propose a far-infrared image vehicle detection algorithm based on visual saliency and deep learning. Firstly, most of the nonvehicle pixels will be removed with visual saliency computation. Then, vehicle candidate will be generated by using prior information such as camera parameters and vehicle size. Finally, classifier trained with deep belief networks will be applied to verify the candidates generated in last step. The proposed algorithm is tested in around 6000 images and achieves detection rate of 92.3% and processing time of 25 Hz which is better than existing methods.