Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2018, Article ID 1745257, 11 pages
https://doi.org/10.1155/2018/1745257
Research Article

Nonlinear Electromagnetic Acoustic Testing Method for Tensile Damage Evaluation

1School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
2State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China

Correspondence should be addressed to Zhichao Cai; moc.liamxof@tubehczc

Received 19 July 2017; Accepted 26 December 2017; Published 10 April 2018

Academic Editor: Emad Elbeltagi

Copyright © 2018 Zhichao Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Joseph, Ultrasonic Guided Waves in Solid Media, Cambridge University Press, New York, NY, USA, 2014.
  2. K. H. Matlack, J. Y. Kim, L. J. Jacobs, and J. Qu, “Review of second harmonic generation measurement techniques for material state determination in metals,” Journal of Nondestructive Evaluation, vol. 34, no. 1, p. 273, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Cantrell and W. T. Yost, “Effect of precipitate coherency strains on acoustic harmonic generation,” Journal of Applied Physics, vol. 81, no. 7, pp. 2957–2962, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Valluri, K. Balasubramaniam, and R. V. Prakash, “Creep damage characterization using non-linear ultrasonic techniques,” ActaMaterialia., vol. 58, no. 6, pp. 2079–2090, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Shui, Y. Wang, P. Huang, and J. Qu, “Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints,” NDT & E International, vol. 70, pp. 9–15, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wan, Q. Zhang, G. Xu, and P. W. Tse, “Numerical simulation of nonlinear lamb waves used in a thin plate for detecting buried micro-cracks,” Sensors, vol. 14, no. 12, pp. 8528–8546, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Ruiz, N. Ortiz, A. Medina, J. Y. Kim, and L. J. Jacobs, “Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel,” NDT and E International., vol. 54, pp. 19–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Shui, Y. Wang, and F. Gong, “Evaluation of plastic damage for metallic materials under tensile load using nonlinear longitudinal waves,” NDT & E International., vol. 55, pp. 1–8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Frouin, S. Sathish, T. E. Matikas, and J. K. Na, “Ultrasonic linear and nonlinear behavior of fatigued Ti–6Al–4V,” Journal of Materials Research., vol. 14, no. 4, pp. 1295–1298, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Jeong, S. H. Nahm, K. Y. Jhang, and Y. H. Nam, “A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity,” Ultrasonics, vol. 41, no. 7, pp. 543–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Hurley, D. Balzar, and P. T. Purtscher, “Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel,” Journal of Materials Research., vol. 15, no. 9, pp. 2036–2042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Kim, L. J. Jacobs, J. M. Qu, and J. W. Littles, “Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves,” The Journal of the Acoustical Society of America., vol. 120, no. 3, pp. 1266–1273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Pruell, J. Y. Kim, J. Qu, and L. J. Jacobs, “A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate,” NDT and E International., vol. 42, no. 3, pp. 199–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Choi, Y. Liu, X. Yao, and C. J. Lissenden, “Effect of localized microstructural evolution on higher harmonic generation of guided wave modes,” in 41st annual review of progress in quantitative nondestructive evaluation, pp. 1592–1598, Boise Idah, USA, 2014. View at Publisher · View at Google Scholar
  15. T. Sebastian, J. Y. Kim, J. M. Qu, and L. J. Jacobs, “Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity,” Ultrasonics, vol. 54, no. 6, pp. 1470–1475, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Liu, H. Sohn, T. Kundu, and S. Yang, “Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS),” NDT & E International, vol. 66, pp. 106–116, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hirao and H. Ogi, Electromagnetic Acoustic Transducers: Noncontacting Ultrasonic Measurement Using EMATs, Springer, KK, Japan, Second Edition edition, 2016.
  18. M. Kogia, T. H. Gan, L. M. Balachandran et al., “High temperature shear horizontal electromagnetic acoustic transducer for guided wave inspection,” Sensors, vol. 16, no. 12, p. 582, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Ogi, T. Ohtani, and S. Aoki, “Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels,” Journal of Applied Physics, vol. 90, no. 1, pp. 438–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Ohtani, H. Ogi, and M. Hirao, “Noncontact evaluation of surface-wave nonlinearity for creep damage in Cr-Mo-V steel,” Japanese Journal of Applied Physics, vol. 48, no. 7, article 07GD02, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Cobb, M. Capps, C. Duffer, J. Feiger, K. Robinson, and B. Hollingshaus, “Nonlinear ultrasonic measurements with EMATs for detecting pre-cracking fatigue damage,” in Review of Progress in Quantitative Nondestructive Evaluation, vol. 1430, pp. 299–306, Burlington, VT, USA, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Cobb, E. Macha, J. Bartlett, and Y. Xia, “Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound,” in 43rd annual review of progress in quantitative nondestructive Evaluation, vol. 1806, Atlanta, GA, USA, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Pei, P. Xiao, S. Zhao, and Z. Chen, “Development of a flexible film electromagnetic acoustic transducer for nondestructive testing,” Sensors and Actuators A: Physical., vol. 258, pp. 68–73, 2017. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Rueter, “Experimental demonstration and circuitry for a very compact coil-only pulse Echo EMAT,” Sensors, vol. 17, no. 12, p. 926, 2017. View at Publisher · View at Google Scholar · View at Scopus
  25. V. K. Chillara and C. J. Lissenden, “Nonlinear guided waves in plates: a numerical perspective,” Ultrasonics, vol. 54, no. 6, pp. 1553–1558, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Zhang, P. X. Yi, Y. H. Li, B. Hui, and X. Zhang, “A new method to evaluate surface defects with an electromagnetic acoustic transducer,” Sensors, vol. 15, no. 12, pp. 17420–17432, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Yang, V. K. Chillara, C. J. Lissenden, and L. Joseph, “Third harmonic shear horizontal and Rayleigh lamb waves in weakly nonlinear plates,” Journal of Applied Physics, vol. 114, no. 11, article 114908, 2013. View at Publisher · View at Google Scholar · View at Scopus