Journal of Spectroscopy
 Journal metrics
Acceptance rate41%
Submission to final decision76 days
Acceptance to publication60 days
CiteScore2.000
Impact Factor1.243

Exploratory Study on Screening Chronic Renal Failure Based on Fourier Transform Infrared Spectroscopy and a Support Vector Machine Algorithm

Read the full article

 Journal profile

Journal of Spectroscopy publishes research into the theory and application of spectroscopy across all disciplines, including biology, chemistry, engineering, earth sciences, medicine, materials science, physics, and space science.

 Editor spotlight

Journal of Spectroscopy maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Review Article

Worthwhile Relevance of Infrared Spectroscopy in Characterization of Samples and Concept of Infrared Spectroscopy-Based Synchrotron Radiation

The study explores the nitty-gritty of infrared spectroscopy. Firstly, the review gives a concise history of infrared discovery and its location in the electromagnetic spectrum. Secondly, the infrared spectroscopy is reported for its mechanism, principles, sample preparation, and application for absence and presence of functional groups determination in both ligands and coordination compounds. Thirdly, it helps in purity determination of unknown samples. Additional studies regarding this study entail infrared spectroscopy-based synchrotron radiation. It serves as a giant microscope to give detailed information of samples under investigation compared to the conventional infrared instrument. Infrared will continue to be useful to both chemical and pharmaceutical industries, in order to make chemical products and manufactured drugs put on wholesome integrity.

Research Article

Long-Term Impact of New Calcium-Silicate-Based Sealer on Mineral Contents and Crystallinity of Radicular Dentin: An Ex Vivo Study

Introduction. This study aimed to evaluate the long-term impact of new calcium silicate-based sealer (HiFlow Bioceramic) compared to calcium hydroxide-based sealer (Sealapex) on mineral constituents and crystallinity of radicular dentin. Methods. Roots of multirooted maxillary molars were denuded their dentin from all covered cementum then longitudinally split. The dentin segments were divided into three groups covered with either HiFlow root canal sealer or Sealapex root canal sealer or kept untreated (control group). After complete setting of sealers, the radicular dentin of each group was stored in phosphate buffer solution or deionized water for 60 days and then examined with Fourier Infrared Spectroscopy, scanning electron microscope/energy dispersed X-ray and X-ray diffraction (XRD). Results. When the dentin was stored in phosphate buffer solution, compared with untreated dentin, Fourier transform infrared spectra showed insignificant increase in the amide I and phosphate, significant increase in carbonate area, and carbonate/phosphate ratio, while there was insignificant change in phosphate/amide I ratio of HiFlow-treated dentin, whereas Sealapex induced significant decrease in amide I area, phosphate area, and phosphate/amide ratio. Both sealers induced significant increase in crystallinity index and significant decrease in crystallinity percent. Energy dispersed X-ray showed decrease in calcium content by both sealers. The phosphate content was increased by HiFlow and decreased by Sealapex. Conclusions. The mineral composition and crystallinity of dentin were insignificantly changed by the long-term HiFlow treatment, whereas, markedly changes by Sealapex.

Research Article

Spectral Radiative Properties of a Liquid n-Octane Droplet in the Midinfrared Region

The optical constants of a liquid hydrocarbon such as liquid n-octane are basic material properties that may be used to evaluate their thermal radiation transfer capabilities. In this study, the ellipsometry method was used to measure the optical constants of liquid n-octane in the midinfrared wavelength range of 2.0–16.0 μm at temperatures of 20, 50, and 80°C. Experimental analyses indicate the significant effect of temperature on the refractive index, although it has little effect on the absorption index. With increasing temperature, the refractive index shows a linear decrease, and reduced density leads to weaker absorption intensities. The radiative properties of n-octane droplets, including the absorption and scattering efficiency factors of single droplets with droplet radii r = 10, 20, 50, and 100 μm and the absorption and scattering coefficients in a droplets-air system of droplet volume fractions fv = 2%, 3%, and 4%, were calculated using Mie theory. The numerical results indicate that, with increasing temperature, the absorption efficiency factor slightly decreases, and the variation trend of the scattering efficiency factor is more complicated. With increasing droplet radius, the absorption efficiency factor increases within the studied wavelength range, except for certain absorption peaks, but the scattering efficiency factor tends to decrease. While the absorption is greater, the scattering is weaker for a given droplet radius. With an increasing volume fraction of n-octane droplets, the absorption and scattering coefficients increase linearly within the studied wavelength range.

Research Article

Moving-Window-Improved Monte Carlo Uninformative Variable Elimination Combining Successive Projections Algorithm for Near-Infrared Spectroscopy (NIRS)

The MC-UVE-SPA method is commonly proposed as a variable selection approach for multivariate calibration. However, the SPA tends to select wavelength variables that are sparsely distributed over the wavelength ranges of the variables selected by the MC-UVE algorithm, and the MC-UVE-SPA cascade cannot improve the problem of wavelength point discontinuity. It is addressed in this paper by proposing a moving-window- (MW-) improved MC-UVE-SPA wavelength selection algorithm. The proposed algorithm improves the continuity of the selected wavelength variables and thereby better exploits the advantages of the MC-UVE algorithm and the SPA to obtain regression models with high prediction accuracy. The MC-UVE, MC-UVE-SPA, and MC-UVE-SPA-MW algorithms are applied for conducting wavelength variable selection for the NIR spectral absorbance data of corn, diesel fuel, and ethylene. Here, partial least squares regression (PLSR) models reflecting the oil content of corn, the boiling point of diesel fuel, and the ethylene concentration are established after conducting wavelength selection using the MC-UVE algorithm, and corresponding multiple linear regression (MLR) models are established after conducting wavelength selection using the MC-UVE-SPA and MC-UVE-SPA-MW algorithms. Experimental results demonstrate that the progressive elimination of uncorrelated and collinear variables generates increasingly simplified partial-spectrum models with greater prediction accuracy than the full-spectrum model. Among the three wavelength selection algorithms, the MC-UVE-SPA selected the least number of wavelength variables, while the proposed MC-UVE-SPA-MW algorithm provided models with the greatest prediction accuracy.

Research Article

Determination of Caffeine Content in Commercial Energy Beverages Available in Saudi Arabian Market by Gas Chromatography-Mass Spectrometric Analysis

The popularity of energy beverages among young adult population is high. These drinks are claimed to boost energy and performance and contain high concentration of caffeine as one of the several ingredients. Discrepancies have been encountered by some of the previous studies between the actual quantity of caffeine present in the product and the amount mentioned on the label, making the determination of caffeine content in these drinks very important. Thus, in this study, we analyzed the caffeine concentration in most popular energy drinks available in Saudi Arabia. The energy drink samples (n = 9) were procured from retail outlets. Sample solutions were prepared in methanol and analyzed for caffeine content by GC-MS. Chromatographic parameters were optimized to achieve optimum resolution and various validation parameters were evaluated. The method was successfully applied for the quantification of caffeine in energy drinks by directly injecting the multifold diluted samples in methanol. The method was linear (r2 = 0.999) over a concentration range of 5–25 µg/mL, specific, precise (%RSD of peak area = 0.56–0.78), and accurate (%recovery = 99.3–101.2%). The amounts of caffeine determined were found in the range of 20.82–33.72 mg/100 mL (52.05–84.3 mg/pack). Results revealed that the amount of caffeine actually present in the tested drinks varied within ±10% range from the amount specified on the product labels. The amounts of caffeine detected in tested beverages were within the USFDA safe upper limit of per-day caffeine consumption, which has indicated that the consumption of one serving of energy drink is unlikely to produce any adverse health effect.

Research Article

Rapid Determination of Catechin Content in Black Tea by Fluorescence Spectroscopy

Catechin can effectively prevent the occurrence of cancers due to its strong antioxidant capacity. In this study, the catechin contents of black teas from 12 different regions of south China were investigated using fluorescence spectroscopy. Herein, the catechin contents of various black teas with constant concentration were determined at the optimal excitation and emission wavelength combining the standard addition method and fluorescence spectroscopy. The results indicated that there was a linear relationship between the obtained concentration and fluorescence intensity, where the R values were all greater than 0.99 and the limit of quantification (LOQ) was 0.02 μg/mL. Furthermore, the content of catechin monomer in the chlorophyll environment was measured under the same experimental conditions to demonstrate the correctness of the above experimental methods. It revealed that the experimental error was about 1.14% compared with the actual content. The current work was proved to be an efficient way to detect fluorescence spectrum through diluting the concentration of tea samples, thereby increasing the determination limit of catechin.

Journal of Spectroscopy
 Journal metrics
Acceptance rate41%
Submission to final decision76 days
Acceptance to publication60 days
CiteScore2.000
Impact Factor1.243
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.