Journal of Spectroscopy

Journal of Spectroscopy / 2004 / Article

Open Access

Volume 18 |Article ID 251698 | 10 pages | https://doi.org/10.1155/2004/251698

Development and AFM study of porous scaffolds for wound healing applications

Abstract

An engineering approach to the development of biomaterials for promotion of wound healing emphasises the importance of a well‒controlled architecture and concentrates on optimisation of morphology and surface chemistry to stimulate guidance of the cells within the wound environment. A series of three‒dimensional porous scaffolds with 80–90% bulk porosity and fully interconnected macropores were prepared from two biodegradable materials – cellulose acetate (CA) and poly (lactic‒co‒glycolic acid) (PLGA) through the phase inversion mechanism of formation. Surface morphology of obtained scaffolds was determined using atomic force microscopy (AFM) in conjunction with optical microscopy. Scanning Electron Microscopy (SEM) was applied to characterise scaffolds bulk morphology. Biocompatibility and biofunctionality of the prepared materials were assessed through a systematic study of cell/material interactions using atomic force microscopy (AFM) methodologies together with in vitro cellular assays. Preliminary data with human fibroblasts demonstrated a positive influence of both scaffolds on cellular attachment and growth. The adhesion of cells on both biomaterials were quantified by AFM force measurements in conjunction with a cell probe technique since, for the first time, a fibroblast probe has been successfully developed and optimal conditions of immobilisation of the cells on the AFM cantilever have been experimentally determined.

Copyright © 2004 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

99 Views | 725 Downloads | 11 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.