Journal of Spectroscopy

Journal of Spectroscopy / 2004 / Article
Special Issue

Second International Conference on Biomedical Spectroscopy: From the Bench to the Clinic, London, UK, 5–8 July, 2003

View this Special Issue

Open Access

Volume 18 |Article ID 392536 | https://doi.org/10.1155/2004/392536

Warren C. Kett, Deirdre R. Coombe, "A structural analysis of heparin‒like glycosaminoglycans using MALDI‒TOF mass spectrometry", Journal of Spectroscopy, vol. 18, Article ID 392536, 17 pages, 2004. https://doi.org/10.1155/2004/392536

A structural analysis of heparin‒like glycosaminoglycans using MALDI‒TOF mass spectrometry

Abstract

Mass spectrometry (MS) techniques have spear‒headed the field of proteomics. Recently, MS has been used to structurally analyse carbohydrates. The heparin/heparan sulfate‒like glycosaminoglycans (HLGAGs) present a special set of difficulties for structural analysis because they are highly sulfated and heterogeneous. We have used a matrix‒assisted laser desorption/ionization time of flight mass spectrometry (MALDI‒MS) technique in which heparin fragments are non‒covalently bound to basic peptides of a known mass, so as to limit in‒source desulfation and hence afford an accurate mass. We examined a range of different sized fragments with varying degrees of sulfation. The potential of combining the MALDI‒MS technique with enzymatic digestion to obtain saccharide sequence information on heparin fragments was explored. A disaccharide analysis greatly assists in determining a sequence from MALDI‒MS data. Enzymatic digestion followed by MALDI‒MS allows structural data on heparin fragments too large for direct MALDI‒MS to be obtained. We demonstrate that synthetic sulfated oligosaccharides can also be analysed by MALDI‒MS. There are advantages and limitations with this methodology, but until superior MS techniques become readily accessible to biomedical scientists the MALDI‒MS method provides a means to structurally analyse HLGAG fragments that have therapeutic potential because of their ability to bind to and functionally regulate a host of clinically important proteins.

Copyright © 2004 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views291
Downloads866
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.