Journal of Spectroscopy

Journal of Spectroscopy / 2004 / Article
Special Issue

Second International Conference on Biomedical Spectroscopy: From the Bench to the Clinic, London, UK, 5–8 July, 2003

View this Special Issue

Open Access

Volume 18 |Article ID 572415 | https://doi.org/10.1155/2004/572415

LeAnn J. Godderz, Karla K. Rodgers, "RAG1 oligomerization states and secondary structural properties: an initial characterization of V(D)J recombinase complex formation", Journal of Spectroscopy, vol. 18, Article ID 572415, 12 pages, 2004. https://doi.org/10.1155/2004/572415

RAG1 oligomerization states and secondary structural properties: an initial characterization of V(D)J recombinase complex formation

Abstract

The recombination activating gene products (RAG1 and 2) catalyze the initial DNA cleavage steps during V(D)J recombination for the diversification of the immune repertoire. As the fundamental properties of the RAG proteins remain largely unknown, our objective is to investigate the self–association and conformational properties of RAG1. To analyze RAG1 association and dissociation, a time course of multi–angle laser light scattering measurements (MALL SEC) was performed on samples at different oligomerization states over a wide range of ionic strengths. The molecular masses of the predominant RAG1 species corresponded to dimer, tetramer, and a previously uncharacterized octamer state. Furthermore, the fraction of RAG1 in the tetrameric and octameric states increased significantly over time at lower ionic strengths, indicating that these oligomeric forms may factor into the physiological function of RAG1. Circular dichroism (CD) analysis of RAG1 showed a significant dependence in secondary structure on ionic strength with changes in α-helical content over time that may correspond to the changes in oligomerization states shown by MALLS SEC. Together, the MALLS SEC and CD analyses of RAG1 self-association properties and secondary structure give further insight into formation of the protein complex responsible for catalyzing V(D)J recombination.

Copyright © 2004 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views66
Downloads321
Citations

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.