Table of Contents Author Guidelines Submit a Manuscript
Spectroscopy: An International Journal
Volume 27, Article ID 686183, 7 pages
http://dx.doi.org/10.1155/2012/686183

Characterization of Type I and IV Collagens by Raman Microspectroscopy: Identification of Spectral Markers of the Dermo-Epidermal Junction

1CNRS FRE 3481, MEDyC, UFR Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
2CNRS FRE 3481, MEDyC, UFR Medecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France

Copyright © 2012 T. T. Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Waller and H. I. Maibach, “Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity,” Skin Research and Technology, vol. 11, no. 4, pp. 221–235, 2005. View at Google Scholar
  2. E. Ly, O. Piot, A. Durlach, P. Bernard, and M. Manfait, “Polarized Raman microspectroscopy can reveal structural changes of peritumoral dermis in basal cell carcinoma,” Applied Spectroscopy, vol. 62, no. 10, pp. 1088–1094, 2008. View at Google Scholar · View at Scopus
  3. Y. Maeshima, P. C. Colorado, A. Torre et al., “Distinct antitumor properties' of a type IV collagen domain derived from basement membrane,” Journal of Biological Chemistry, vol. 275, no. 28, pp. 21340–21348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Maeshima, M. Manfredi, C. Reimerli et al., “Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin,” Journal of Biological Chemistry, vol. 276, no. 18, pp. 15240–15248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Pasco, J. Han, P. Gillery et al., “A specific sequence of the noncollagenous domain of the α3(IV) chain of type IV collagen inhibits expression and activation of matrix metalloproteinases by tumor cells,” Cancer Research, vol. 60, no. 2, pp. 467–473, 2000. View at Google Scholar · View at Scopus
  6. S. Pasco, L. Ramont, L. Venteo, M. Pluot, F. X. Maquart, and J. C. Monboisse, “In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model,” Experimental Cell Research, vol. 301, no. 2, pp. 251–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Floquet, S. Pasco, L. Ramont et al., “The antitumor properties of the α3(IV)-(185–203) peptide from the NC1 domain of type IV collagen (tumstatin) are conformation-dependent,” Journal of Biological Chemistry, vol. 279, no. 3, pp. 2091–2100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Thevenard, N. Floquet, L. Ramont et al., “Structural and antitumor properties of the YSNSG cyclopeptide derived from tumstatin,” Chemistry and Biology, vol. 13, no. 12, pp. 1307–1315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Vázquez, S. Palacios, N. Alemañ, and F. Guerrero, “Changes of the basement membrane and type IV collagen in human skin during aging,” Maturitas, vol. 25, no. 3, pp. 209–215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Borel, “Les collagènes,” l'Eurobiologiste, vol. 25, no. 195, pp. 247–271, 1991. View at Google Scholar
  11. K. Beck and B. Brodsky, “Supercoiled protein motifs: the collagen triple-helix and the α- helical coiled coil,” Journal of Structural Biology, vol. 122, no. 1-2, pp. 17–29, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Zhang, K. L. Andrew Chan, G. Zhang et al., “Raman microspectroscopic and dynamic vapor sorption characterization of hydration in collagen and dermal tissue,” Biopolymers, vol. 95, no. 9, pp. 607–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Kalluri, “Basement membranes: structure, assembly and role in tumour angiogenesis,” Nature Reviews Cancer, vol. 3, no. 6, pp. 422–433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Candiello, G. J. Cole, and W. Halfter, “Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane,” Matrix Biology, vol. 29, no. 5, pp. 402–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, and H. C. Wulf, “Water and protein structure in photoaged and chronically aged skin,” Journal of Investigative Dermatology, vol. 111, no. 6, pp. 1129–1132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. K. A. Piez, E. A. Eigner, and M. S. Lewis, “The chromatographic separation and amino acid composition of the subunits of several collagens,” Biochemistry, vol. 2, no. 1, pp. 58–66, 1963. View at Google Scholar · View at Scopus
  17. B. G. Frushour and J. L. Koenig, “Raman scattering of collagen, gelatin, and elastin,” Biopolymers, vol. 14, no. 2, pp. 379–391, 1975. View at Google Scholar · View at Scopus
  18. T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh, and S. Mann, “Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas,” International Journal of Biological Macromolecules, vol. 32, no. 3–5, pp. 199–204, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Gniadecka, O. F. Nielsen, D. H. Christensen, and H. C. Wulf, “Structure of water, proteins, and lipids in intact human skin, hair, and nail,” Journal of Investigative Dermatology, vol. 110, no. 4, pp. 393–398, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kuzuhara, “Analysis of structural changes in bleached keratin fibers (black and white human hair) using Raman spectroscopy,” Biopolymers, vol. 81, no. 6, pp. 506–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Kuzuhara, N. Fujiwara, and T. Hori, “Analysis of international structure changes in black human hair keratin fibers with aging using Raman spectroscopy,” Biopolymers, vol. 87, no. 2-3, pp. 134–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. S. Parker, Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, Plenum Press, NewYork, NY, USA, 1983.