Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2013 (2013), Article ID 210671, 7 pages
http://dx.doi.org/10.1155/2013/210671
Research Article

Human and Bovine Dentin Composition and Its Hybridization Mechanism Assessed by FT-Raman Spectroscopy

1Department of Dental Materials and Operative Dentistry, School of Dentistry, University of Vale do Paraíba (UNIVAP), Urbanova, 12.244-000 São José dos Campos, SP, Brazil
2Laboratory of Biomedical Vibrational Spectroscopy, Research and Development Institute (IP&D), University of Vale do Paraíba (UNIVAP), Urbanova, 12.244-000 São José dos Campos, SP, Brazil

Received 26 June 2012; Accepted 22 November 2012

Academic Editor: Christoph Krafft

Copyright © 2013 L. E. S. Soares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Leung and M. D. Morris, “Characterization of the chemical interactions between 4-META and enamel by Raman spectroscopy,” Dental Materials, vol. 11, pp. 191–195, 1995. View at Google Scholar
  2. M. Miyazaki, H. Onose, and B. K. Moore, “Analysis of the dentin-resin interface by use of laser Raman spectroscopy,” Dental Materials, vol. 18, no. 8, pp. 576–580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Lopes, M. A. Sinhoreti, L. Correr Sobrinho, and S. Consani, “Comparative study of the dental substrate used in shear bond strength tests,” Brazilian Oral Research, vol. 17, no. 2, pp. 171–175, 2003. View at Google Scholar · View at Scopus
  4. M. Sato and M. Miyazaki, “Comparison of depth of dentin etching and resin infiltration with single-step adhesive systems,” Journal of Dentistry, vol. 33, no. 6, pp. 475–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Nakamichi, M. Iwaku, and T. Fusayama, “Bovine teeth as possible substitutes in the adhesion test,” Journal of Dental Research, vol. 62, no. 10, pp. 1076–1081, 1983. View at Google Scholar · View at Scopus
  6. M. S. Cenci, E. Piva, F. Potrich, E. Formolo, F. F. Demarco, and J. M. Powers, “Microleakage in bonded amalgam restorations using different adhesive materials,” Brazilian Dental Journal, vol. 15, no. 1, pp. 13–18, 2004. View at Google Scholar · View at Scopus
  7. R. B. Fonseca, F. Haiter-Neto, A. J. Fernandes-Neto, G. A. S. Barbosa, and C. J. Soares, “Radiodensity of enamel and dentin of human, bovine and swine teeth,” Archives of Oral Biology, vol. 49, no. 11, pp. 919–922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sauro, D. H. Pashley, F. Mannocci et al., “Micropermeability of current self-etching and etch-and-rinse adhesives bonded to deep dentine: a comparison study using a double-staining/confocal microscopy technique,” European Journal of Oral Sciences, vol. 116, pp. 184–193, 2008. View at Google Scholar
  9. F. Ozer, N. Unlu, and A. Sengun, “Influence of dentinal regions on bond strengths of different adhesive systems,” Journal of Oral Rehabilitation, vol. 30, pp. 659–663, 2003. View at Google Scholar
  10. A. I. Abdalla, “Microtensile and tensile bond strength of single-bottle adhesives: a new test method,” Journal of Oral Rehabilitation, vol. 31, no. 4, pp. 379–384, 2004. View at Google Scholar · View at Scopus
  11. J. Xu, I. Stangel, I. S. Butler, and D. F. R. Gilson, “An FT-Raman spectroscopic investigation of dentin and collagen surfaces modified by 2-hydroxyethylmethacrylate,” Journal of Dental Research, vol. 76, no. 1, pp. 596–601, 1997. View at Google Scholar · View at Scopus
  12. Y. Wang and P. Spencer, “Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy,” Journal of Biomedical Materials Research, vol. 60, pp. 300–308, 2002. View at Google Scholar
  13. G. Penel, G. Leroy, C. Rey, and E. Bres, “MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites,” Calcified Tissue International, vol. 63, no. 6, pp. 475–481, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang and P. Spencer, “Physicochemical interactions at the interfaces between self-etch adhesive systems and dentin,” Journal of Dentistry, vol. 32, pp. 567–579, 2004. View at Google Scholar
  15. Y. Wang and P. Spencer, “Hybridization efficiency of the adhesive/dentin interface with wet bonding,” Journal of Dental Research, vol. 82, pp. 141–145, 2003. View at Google Scholar
  16. Y. Wang and P. Spencer, “Continuing etching of an all-in-one adhesive in wet dentin tubules,” Journal of Dental Research, vol. 84, pp. 350–354, 2005. View at Google Scholar
  17. R. Schilke, J. A. Lisson, O. Bauss, and W. Geurtsen, “Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation,” Archives of Oral Biology, vol. 45, pp. 355–361, 2000. View at Google Scholar
  18. L. E. Soares, A. M. do Espírito Santo, A. B. Junior et al., “Effects of Er:YAG laser irradiation and manipulation treatments on dentin components—part 1: Fourier transform-Raman study,” Journal of Biomedical Optics, vol. 14, no. 2, Article ID 024001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. C. T. Ko, L. P. Choo-Smith, M. Hewko et al., “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” Journal of Biomedical Optics, vol. 10, no. 3, pp. 1–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. Lopes, M. A. C. Sinhoreti, L. C. Sobrinho, and S. Consani, “Comparative study of the dental substrate used in shear bond strength tests,” Pesqui. Odontol. Bras, vol. 17, pp. 171–175, 2003. View at Google Scholar
  21. S. Habelitz, M. Balooch, S. J. Marshall, G. Balooch, and G. W. Marshall Jr., “In situ atomic force microscopy of partially demineralized human dentin collagen fibrils,” Journal of Structural Biology, vol. 138, no. 3, pp. 227–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. O. Tanaka, E. Medici Filho, J. A. P. Salgado et al., “Comparative analysis of human and bovine teeth: radiographic density,” Brazilian Oral Research, vol. 22, no. 4, pp. 346–351, 2008. View at Google Scholar · View at Scopus
  23. D. H. Pashley, H. Sano, B. Ciucchi, M. Yoshiyama, and R. M. Carvalho, “Adhesion testing of dentin bonding agents: a review,” Dental Materials, vol. 11, no. 2, pp. 117–125, 1995. View at Google Scholar · View at Scopus
  24. F. Wegehaupt, D. Gries, A. Wiegand, and T. Attin, “Is bovine dentine an appropriate substitute for human dentine in erosion/abrasion tests?” Journal of Oral Rehabilitation, vol. 35, no. 5, pp. 390–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Bouillaguet, P. Gysi, J. C. Wataha et al., “Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems,” Journal of Dentistry, vol. 29, no. 1, pp. 55–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. A. Al-Ehaideb and H. Mohammed, “Shear bond strength of “one bottle” dentin adhesives,” Journal of Prosthetic Dentistry, vol. 84, no. 4, pp. 408–412, 2000. View at Publisher · View at Google Scholar · View at Scopus