Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2013, Article ID 741020, 9 pages
http://dx.doi.org/10.1155/2013/741020
Research Article

Experimental Studies on Electronic Configuration Mixing for the Even-Parity Levels of Gd I Using Isotope Shifts Recorded in the Visible Region with FTS

1Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai 400085, India
2High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India

Received 17 July 2012; Accepted 23 October 2012

Academic Editor: Alan C. Samuels

Copyright © 2013 B. K. Ankush and M. N. Deo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels- the rare earth elements,” National Standard Reference Data Series (NSRDS), vol. 60, pp. 209–224, 1978. View at Google Scholar · View at Scopus
  2. W. Albertson, “The arc spectrum of samarium and gadolinium. Normal electron configurations of the rare earths,” Physical Review, vol. 47, no. 5, pp. 370–376, 1935. View at Publisher · View at Google Scholar · View at Scopus
  3. H. N. Russell, “The ark and spark spectra of Gadolinium,” Journal of the Optical Society of America, vol. 40, pp. 550–575, 1950. View at Google Scholar
  4. D. R. Speck, “Hyperfine structure and nuclear moments of gadolinium,” Physical Review, vol. 101, no. 6, pp. 1725–1729, 1956. View at Publisher · View at Google Scholar · View at Scopus
  5. N. K. Odintsova and A. R. Striganov, “Isotope shifts and deformation of gadolinium nuclei,” Optics and Spectroscopy, vol. 41, pp. 545–547, 1976. View at Google Scholar
  6. S. M. Afzal, A. Venugopalan, and S. A. Ahmad, “Isotope shift studies in the spectra of Gadolinium in UV region and term shifts of high even levels of Gd I,” Zeitschrift fur Physik D, vol. 41, no. 2, pp. 95–100, 1997. View at Google Scholar · View at Scopus
  7. S. A. Ahmad, G. D. Saksena, and A. Venugopalan, “Isotope shift studies in gadolinium spectra,” Physica C, vol. 81, no. 2, pp. 366–375, 1976. View at Google Scholar · View at Scopus
  8. S. A. Ahmad, A. Venugopalan, and G. D. Saksena, “Isotope shifts in odd and even energy levels of the neutral and singly ionised gadolinium atom,” Spectrochimica Acta B, vol. 34, no. 5, pp. 221–235, 1979. View at Google Scholar · View at Scopus
  9. S. A. Ahmad, A. Venugopalan, and G. D. Saksena, “Isotope shifts and electronic configurations of some of the energy levels of the neutral gadolinium atom,” Spectrochimica Acta B, vol. 37, no. 8, pp. 637–645, 1982. View at Google Scholar · View at Scopus
  10. A. Venugopalan and S. A. Ahmad, “Reevaluation of term isotope shifts of low even levels of 4f86s2 configuration and high odd-parity levels of neutral gadolinium atom,” Spectrochimica Acta B, vol. 56, no. 1, pp. 129–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Miyabe and I. Wakaida, “Identification of single-colour multiphoton ionization transitions of atomic gadolinium,” Journal of Physics B, vol. 30, no. 19, pp. 4193–4206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Miyabe, M. Oba, and I. Wakaida, “Analysis of the even-parity Rydberg series of Gd I to determine its ionization potential and isotope shift,” Journal of Physics B, vol. 31, no. 20, pp. 4559–4571, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. H. D. Kronfeldt, G. Klemz, and D. J. Weber, “J-dependence of the isotope shift in Gd I 4f75d6s2 (a9D),” Zeitschrift für Physik D, vol. 10, no. 1, pp. 103–104, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. H. D. Kronfeldt, and G. Klemz, and D. J. Weber, “On the J- dependence of the isotope shift in the ground term of Gd I,” Journal of Physics B, vol. 23, pp. 1107–1116, 1990. View at Publisher · View at Google Scholar
  15. W. G. Jin, H. Sakata, M. Wakasugi, T. Horiguchi, and Y. Yoshizawa, “J-dependences of the isotope shift and hyperfine structure in Gd I 4f75d6s29D, 4f75d6s6p 9D, and 9F terms,” Physical Review A, vol. 42, no. 3, pp. 1416–1423, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. W. G. Jin, T. Wakui, T. Endo, H. Uematsu, T. Minowa, and H. J. Katsuragawa, “J dependence of the isotope shift in the Gd I 4f76s26p 9P term,” Japanese Journal of Applied Physics, vol. 40, no. 10, pp. 6129–6130, 2001. View at Google Scholar · View at Scopus
  17. W. G. Jin, Y. Nemoto, and T. Minowa, “J dependence of isotope shifts at high-lying levels of Gd I,” Journal of the Physical Society of Japan, vol. 78, no. 5, Article ID 055001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. W. G. Jin, T. Wakui, T. Endo, H. Uematsu, T. Minowa, and H. J. Katsuragawa, “Specific mass shift in Gd I and Dy I,” Journal of the Physical Society of Japan, vol. 70, no. 8, pp. 2316–2320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. E. C. Jung, D. Y. Jeong, K. Song, and J. Lee, “High-resolution optogalvanic spectroscopy of Gd I,” Optics Communications, vol. 141, no. 1-2, pp. 83–90, 1997. View at Google Scholar · View at Scopus
  20. E. C. Jung, K. H. Ko, S. P. Rho, C. Lim, and C. J. Kim, “Measurement of the populations of metastable levels in gadolinium vapor by diode laser-based UV and near-IR absorption spectroscopy,” Optics Communications, vol. 212, no. 4–6, pp. 293–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Jia, C. Jing, Z. Zhou, and F. Lin, “Hyperfine structure and isotope shifts of high-lying odd-parity levels of Gd I by resonantly enhanced Doppler-free two-photon spectroscopy,” Journal of the Optical Society of America B, vol. 10, no. 12, pp. 2269–2272, 1993. View at Google Scholar · View at Scopus
  22. W. J. Childs, “Hyperfine structure of the 4f75d26s 11F term of 155,157Gd I by laser-rf double resonance,” Physical Review A, vol. 39, no. 10, pp. 4956–4966, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. B. A. Bushaw, W. Nörtershäuser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochimica Acta B, vol. 58, no. 6, pp. 1083–1095, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. B. Dutta, A. G. Martin, W. F. Rogers, and D. L. Clark, “Optical isotope shift and hyperfine structure measurements of 152, 154-158, 160Gd,” Physical Review C, vol. 42, no. 5, pp. 1911–1917, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. B. A. Bushaw, K. Blaum, and W. Nortershauser, “Determination of the 160Gd ionization energy,” Physical Review A, vol. 67, no. 2, Article ID 022508, 5 pages, 2003. View at Google Scholar · View at Scopus
  26. H.-D. Kronfeldt, G. Klemz, S. Kröger, and J.-F. Wyart, “Experimental and theoretical study of the hyperfine structure in the 4f75d6s6p configuration of Gd I,” Physical Review A, vol. 48, no. 6, pp. 4500–4514, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Nörtershäuser, B. A. Bushaw, and K. Blaum, “Double-resonance measurements of isotope shifts and hyperfine structure in GdI with hyperfine-state selection in an intermediate level,” Physical Review A, vol. 62, no. 2, Article ID 022506, 4 pages, 2000. View at Google Scholar · View at Scopus
  28. K. Blaum, B. A. Bushaw, S. Diel et al., “Isotope shifts and hyperfine structure in the [Xe] 4f75d6s29DJ → [Xe]4f75d6s6p 9FJ+1 transitions of gadolinium,” European Physical Journal D, vol. 11, no. 1, pp. 37–44, 2000. View at Google Scholar · View at Scopus
  29. H. Niki, T. Miyamoto, Y. Izawa, S. Nakai, and C. Yamanaka, “Hyperfine structure and isotope shift measurements on gadolinium levels by laser-induced fluorescence spectroscopy,” Optics Communications, vol. 70, no. 1, pp. 16–20, 1989. View at Google Scholar · View at Scopus
  30. H. Niki, T. Tanikawa, S. Tokita, and Y. Izawa, “Measurement of hyperfine structure and isotope shift of transitions in gadolinium using blue diode laser,” Japanese Journal of Applied Physics, vol. 44, no. 8, pp. 6075–6078, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Yi, H. Park, and D. H. Kwon, “Study on the isotope shift and hyperfine structure in Gd I by using a violet diode laser,” Journal of the Korean Physical Society, vol. 43, no. 4, pp. 492–497, 2003. View at Google Scholar · View at Scopus
  32. T. Wakui, W. G. Jin, K. Hasegawa, H. Uematsu, T. Minowa, and H. Katsuragawa, “High-resolution diode-laser spectroscopy of the rare-earth elements,” Journal of the Physical Society of Japan, vol. 72, no. 9, pp. 2219–2223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. B. K. Ankush and M. N. Deo, “Fourier transform high-resolution spectroscopic studies of Gd I: optical isotope shifts in the spectral region of 18700–20200 cm−1,” Physica Scripta, vol. 81, no. 5, Article ID 055301, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. W. G. Jin, H. Ono, and T. Minowa, “Hyperfine structure and isotope shift in high lying levels of Gd I,” Journal of the Physical Society of Japan, vol. 80, Article ID 124301, 4 pages, 2011. View at Google Scholar
  35. W. H. King, Isotope Shifts in Atomic Spectra, Plenum Press, New York, NY, USA, 1984.
  36. J. Bauche and R. J. Champeau, Advances in Atomic and Molecular Physics, vol. 12, Academies, New York, NY, USA, 1976.