Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2013, Article ID 820635, 6 pages
http://dx.doi.org/10.1155/2013/820635
Research Article

Complements to the Theoretical Treatments of the Electron Collision with : An R-Matrix Approach

National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P. O. Box MG-36, Iflov, 077125 Magurele, Romania

Received 29 June 2012; Accepted 13 August 2012

Academic Editor: D. Sajan

Copyright © 2013 V. Stancalie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. G. Burke, R-Matrix Theory of Atomic Collision, vol. 61 of Springer Series on Atomic, Optical and plasma Physics, Springer, New York, NY, USA, 2011.
  2. K. A. Berrington and J. C. Pelan, “Atomic data from the IRON Project. XII. Electron excitation of forbidden transitions in V-like ions Mn III, Fe IV, Co V and Ni VI,” Astronomy and Astrophysics Supplement Series, vol. 114, pp. 367–371, 1995. View at Google Scholar
  3. M. S. T. Watts and V. M. Burke, “Electron impact excitation of complex atoms and ions III: forbidden transitions in Ni2+,” Journal of Physics B, vol. 31, no. 1, article 145, 1998. View at Publisher · View at Google Scholar
  4. M. S. T. Watts, “Electron-impact excitation of complex atoms and ions: V. Forbidden transitions in Co+,” Journal of Physics B, vol. 31, no. 9, article 2065, 1998. View at Publisher · View at Google Scholar
  5. C. A. Ramsbottom, M. P. Scott, K. L. Bell et al., “Electron impact excitation of the iron peak element Fe II,” Journal of Physics B, vol. 35, no. 16, pp. 3451–3477, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Ramsbottom, C. J. Noble, V. M. Burke, M. P. Scott, and P. G. Burke, “Configuration interaction effects in low-energy electron collisions with Fe II,” Journal of Physics B, vol. 37, no. 18, pp. 3609–3631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. A. Ramsbottom, C. J. Noble, V. M. Burke, M. P. Scott, R. Kisielius, and P. G. Burke, “Electron impact excitation of Fe II: total LS effective collision strengths,” Journal of Physics B, vol. 38, no. 16, pp. 2999–3014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. N. Nahar, “Atomic data from the Iron Project LXII. Allowed and forbidden transitions in Fe XVIII in relativistic Breit-Pauli approximation,” Astronomy and Astrophysics, vol. 457, no. 2, pp. 721–728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. P. Scott, C. A. Ramsbottom, C. J. Noble, V. M. Burke, and P. G. Burke, “On the role of “two-particle-one-hole” resonances in electron collisions with Ni V,” Journal of Physics B, vol. 39, no. 2, article 387, 2006. View at Publisher · View at Google Scholar
  10. V. Stancalie, “Forbidden transitions in excitation by electron impact in Co3+: an R-matrix approach,” Physica Scripta, vol. 82, no. 2, Article ID 025301, 2011. View at Publisher · View at Google Scholar
  11. http://www.nist.gov.
  12. J. Sugar and Ch. Corliss, “Atomic energy levels of the iron-period elements: potassium through nickel,” Journal of Physical and Chemical Reference Data, vol. 14, no. 2, article 664, 1985. View at Google Scholar
  13. A. Hibbert, “CIV3—a general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths,” Computer Physics Communications, vol. 9, no. 3, pp. 141–172, 1975. View at Publisher · View at Google Scholar
  14. K. A. Berrington, W. B. Eissner, and P. N. Norrington, “RMATX1: Belfast atomic R-matrix codes,” Computer PhysicsCommunications, vol. 41, p. 75, 1995. View at Google Scholar
  15. V. M. Burke VM and C. J. Noble, “Farm—a flexible asymptotic R-matrix package,” Computer Physics Communications, vol. 85, no. 3, pp. 471–500, 1998. View at Publisher · View at Google Scholar
  16. D. W. Busby, P. G. Burke, V. M. Burke, C. J. Noble, N. S. Scott, and I. T. A. Spence, “HBrowse: a GRACE tool for browsing R-matrix H-files,” Computer Physics Communications, vol. 131, no. 3, pp. 202–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. N. S. Scott and P. G. Burke, “Electron scattering by atoms and ions using the Breit-Pauli Hamiltonian: an R-matrix approach,” Journal of Physics B, vol. 13, no. 21, article 4299, 1980. View at Publisher · View at Google Scholar
  18. N. S. Scott and K. T. Taylor, “A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method,” Computer Physics Communications, vol. 25, no. 4, pp. 347–387, 1982. View at Publisher · View at Google Scholar
  19. E. Clementi and C. Roetti, “Roothaan Hartree Fock atomic wavefunctions. Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z54,” Atomic Data and Nuclear Data Tables, vol. 14, no. 3-4, pp. 177–478, 1974. View at Google Scholar · View at Scopus