Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2013, Article ID 836372, 5 pages
http://dx.doi.org/10.1155/2013/836372
Research Article

Ultraviolet Spectrophotometric Method for Determination of Glipizide in Presence of Liposomal/Proliposomal Turbidity

Lachoo Memorial College of Science and Technology, Pharmacy Wing, Sector-A, Shastri Nagar, Jodhpur, Rajasthan 342003, India

Received 27 May 2013; Revised 17 July 2013; Accepted 18 July 2013

Academic Editor: Renata Diniz

Copyright © 2013 Neelkant Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Nounou, L. K. El-Khordagui, N. A. Khalafallah, and S. A. Khalil, “In vitro release of hydrophilic and hydrophobic drugs from liposomal dispersions and gels,” Acta Pharmaceutica, vol. 56, no. 3, pp. 311–324, 2006. View at Google Scholar · View at Scopus
  2. M. P. Ramprasad, G. M. Anantharamaiah, D. W. Garber, and N. V. Katre, “Sustained-delivery of an apolipoprotein E-peptidomimetic using multivesicular liposomes lowers serum cholesterol levels,” Journal of Controlled Release, vol. 79, no. 1–3, pp. 207–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Mumper and A. S. Hoffman, “The stabilization and release of hirudin from liposomes or lipid-assemblies coated with hydrophobically modified dextran,” AAPS PharmSciTech, vol. 1, no. 1, article E3, 2000. View at Google Scholar · View at Scopus
  4. L. Adhikari, S. Jagadev, S. Sahoo, P. N. Murthy, and U. S. Mishra, “Devlopement and validation of UV-visible spectrophotometric method for simultaneous determination of pioglitazone hydrochloride, metformin hydrochloride and glipizide in its bulk and pharmaceutical dosage form,” International Journal of ChemTech Research, vol. 4, no. 2, pp. 625–630, 2012. View at Google Scholar · View at Scopus
  5. A. Gumieniczek and A. Berecka, “Comparison of capillary electrophoresis and UV derivative spectrophotometry for determination of pioglitazone, glipizide and repaglinide,” Annales Universitatis Mariae Curie-Sklodowska DDD, vol. 24, no. 1, pp. 15–23, 2011. View at Google Scholar · View at Scopus
  6. J. Shaodong, W. J. Lee, J. W. Ee, J. H. Park, S. W. Kwon, and J. Lee, “Comparison of ultraviolet detection, evaporative light scattering detection and charged aerosol detection methods for liquid-chromatographic determination of anti-diabetic drugs,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 4, pp. 973–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. R. Rathod, M. N. Dole, and S. D. Sawant, “Spectrophotometric determination of glipizide in bulk and tablet dosage form by absorption maxima, first order derivative spectroscopy and area under the curve,” Asian Journal of Pharmaceutical and Clinical Research, vol. 5, supplement 3, pp. 102–104, 2012. View at Google Scholar
  8. T. T. Chungath, Y. P. Reddy, and N. Devanna, “Simultaneous spectrophotometric estimation of metformin hydrochloride and glipizide in tablet dosage forms,” International Journal of PharmTech Research, vol. 3, no. 4, pp. 2064–2067, 2011. View at Google Scholar · View at Scopus
  9. A. Aruna and K. Nancey, “Simultaneous estimation of metformin HCL and glipizide in solid dosage forms by ultraviolet spectrophotometry,” Indian Drugs, vol. 37, no. 11, pp. 533–536, 2000. View at Google Scholar · View at Scopus
  10. H. N. Shivakumar, B. G. Desai, S. Pandya, and S. S. Karki, “Influence of β-cyclodextrin complexation on glipizide release from hydroxypropyl methylcellulose matrix tablets,” PDA Journal of Pharmaceutical Science and Technology, vol. 61, no. 6, pp. 472–491, 2007. View at Google Scholar · View at Scopus
  11. R. K. Verma and S. Garg, “Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing,” Journal of Pharmaceutical and Biomedical Analysis, vol. 38, no. 4, pp. 633–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. E. M. Radi and S. H. Eissa, “Voltammetric and spectrophotometric studies on the inclusion complex of glipizide with β-cyclodextrin,” Eurasian Journal of Analytical Chemistry, vol. 6, no. 1, pp. 13–21, 2011. View at Google Scholar · View at Scopus
  13. P. N. Phalke, A. V. Sherikar, and P. M. Dhadke, “Direct spectrophotometric analysis of glipizide and phenformin hydrochloride in pharmaceutical dosage forms,” Indian Journal of Pharmaceutical Sciences, vol. 59, no. 1, pp. 18–21, 1997. View at Google Scholar · View at Scopus
  14. B. Henry, C. Foti, and K. Alsante, “Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule?” Journal of Photochemistry and Photobiology B, vol. 96, no. 1, pp. 57–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Sköld, S. Winiwarter, J. Wernevik et al., “Presentation of a structurally diverse and commercially available drug data set for correlation and benchmarking studies,” Journal of Medicinal Chemistry, vol. 49, no. 23, pp. 6660–6671, 2006. View at Google Scholar
  16. F. Vargas, H. Méndez, E. Tropper, M. Velázquez, and G. Fraile, “Studies on the in vitro phototoxicity of the antidiabetes drug glipizide,” In Vitro and Molecular Toxicology, vol. 13, no. 1, pp. 17–24, 2000. View at Google Scholar · View at Scopus
  17. ICH Guidelines Q2 (R1), “Validation of analytical procedures: text and methodology,” in ICH Harmonized Tripartite Guidelines, 2005. View at Google Scholar
  18. “Variations of linearity,” http://people.duke.edu/~rnau/testing.htm.