Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2013 (2013), Article ID 841738, 6 pages
http://dx.doi.org/10.1155/2013/841738
Research Article

A Comparative Study on Application of Computer Vision and Fluorescence Imaging Spectroscopy for Detection of Huanglongbing Citrus Disease in the USA and Brazil

1Instituto de Física de São Carlos, Universidade de São Paulo, Cx. Postal 369, 13560-970 São Carlos, SP, Brazil
2Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
3Departamento Científico, Fundecitrus, Avenida Dr. Adhemar P. de Barros, 20114 807-040 Araraquara, SP, Brazil

Received 5 June 2012; Accepted 29 October 2012

Academic Editor: Luciano Bachmann

Copyright © 2013 Caio B. Wetterich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Costa, M. Noferini, G. Fiori, and F. Spinelli, “Innovative application of non-destructive techniques for fruit quality and disease diagnosis,” Acta Horticulturae, vol. 753, pp. 275–282, 2007. View at Google Scholar · View at Scopus
  2. R. A. Naidu, E. M. Perry, F. J. Pierce, and T. Mekuria, “The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars,” Computers and Electronics in Agriculture, vol. 66, no. 1, pp. 38–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. M. Yang and C. H. Cheng, “Spectral characteristics of rice plants infested by brown planthoppers,” Proceedings of the National Science Council, Republic of China. Part B, vol. 25, no. 3, pp. 180–186, 2001. View at Google Scholar · View at Scopus
  4. R. Pydipati, T. F. Burks, and W. S. Lee, “Identification of citrus disease using color texture features and discriminant analysis,” Computers and Electronics in Agriculture, vol. 52, no. 1-2, pp. 49–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 6, pp. 610–621, 1973. View at Google Scholar · View at Scopus
  6. E. C. Lins, J. Belasque, and L. G. Marcassa, “Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic,” Applied Optics, vol. 49, no. 4, pp. 663–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Shi and J. Malik, “Normalized cuts and image segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '97), pp. 731–737, Washington, DC, USA, June 1997. View at Scopus
  8. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  9. B. Schölkopf and A. J. Smola, “A short introduction to learning with kernels,” in Advanced Lectures on Machine Learning, S. Mendelson and A. J. Smola, Eds., vol. 2600 of Lecture Notes in Artificial Intelligence, pp. 41–64, Springer, Berlin, Germany, 2003. View at Google Scholar
  10. J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” in Proceedings of the 23rd International Conference on Machine Learning (ICML '06), pp. 233–240, Pittsburgh, Pa, USA, June 2006. View at Scopus
  11. H. D. Gómez, Experiences on HLB (Huanglongbing) Symptoms Detection in Florida, Hermosillo, Sonora, Mexico, 2008, http://www.concitver.com/huanglongbingYPsilidoAsiatico/Memor%C3%ADa-9%20G%C3%B3mez.pdf.
  12. S. A. Lopes, C. A. Massari, J. C. Barbosa, and A. J. Ayres, Huanglongbing in the State of São Paulo—Brazil Current situation, regulation, management and economic impact, 2007, http://www.calcitrusquality.org/wp-content/uploads/2009/05/huanglongbing-in-the-state-of-sp-word-2007.pdf.
  13. H. L. Chamberlain and M. S. Irey, “Comparison of a starch-based field test for Huanglongbing to results from real-time PCR testing of field samples from symptomatic trees in Florida,” in Proceeding of the International Research Conference on Huanglongbing (IRCHLB '08), p. 144, Orlando, Fla, USA, 2008.
  14. X.-L. Deng, Y.-D. Gao, J.-C. Chen, X.-L. Pu, W.-W. Kong, and H.-P. Li, “Current situation of “Candidatus Liberibacter asiaticus” in Guangdong, China, where citrus Huanglongbing was first described,” Journal of Integrative Agriculture, vol. 11, pp. 424–429, 2012. View at Google Scholar