Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2014 (2014), Article ID 834501, 7 pages
http://dx.doi.org/10.1155/2014/834501
Research Article

Interaction of Warfarin with Human Serum Albumin and Effect of Ferulic Acid on the Binding

1Heart Center, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
2The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
3Pharmaceutical College, Hebei Medical University, Shijiazhuang 050017, China
4Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

Received 20 December 2013; Accepted 3 February 2014; Published 13 March 2014

Academic Editor: Lu Yang

Copyright © 2014 Qiang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Zhao, T. T. X. Dong, P. F. Tu, Z. H. Song, C. K. Lo, and K. W. K. Tsim, “Molecular genetic and chemical assessment of radix Angelica (Danggui) in China,” Journal of Agricultural and Food Chemistry, vol. 51, no. 9, pp. 2576–2583, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. X. B. Yang, Y. Zhao, and Y. Lv, “In vivo macrophage activation and physicochemical property of the different polysaccharide fractions purified from Angelica sinensis,” Carbohydrate Polymers, vol. 71, no. 3, pp. 372–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. X. Deng, S.-N. Chen, P. Yao et al., “Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis,” Journal of Natural Products, vol. 69, no. 4, pp. 536–541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Fan, P. F. Xia, X. Liu, J. H. Gu, X. Y. Wu, and L. Zhao, “Simultaneous quantification of two major active components in Radix Angelica sinensis by HPLC with an internal standard correction method,” Instrumentation Science & Technology, vol. 40, no. 5, pp. 416–428, 2012. View at Publisher · View at Google Scholar
  5. Y.-L. Wang, Y.-Z. Liang, B.-M. Chen, Y.-K. He, B.-Y. Li, and Q.-N. Hu, “LC-DAD-APCI-MS-based screening and analysis of the absorption and metabolite components in plasma from a rabbit administered an oral solution of danggui,” Analytical and Bioanalytical Chemistry, vol. 383, no. 2, pp. 247–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Wang, L. Kong, H. F. Zou, J. Y. Ni, and Y. K. Zhang, “Screening and analysis of biologically active compounds in Angelica sinensis by molecular biochromatography,” Chromatographia, vol. 50, no. 7-8, pp. 439–445, 1999. View at Google Scholar · View at Scopus
  7. L. M. Shao, Pharmacopoeia of the People’s Republic of China (Part I), Chemical Industry Press, Beijing, China, 2010.
  8. R. L. Page II and J. D. Lawrence, “Potentiation of warfarin by Dong Quai,” Pharmacotherapy, vol. 19, no. 7, pp. 870–876, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Palareti and C. Legnani, “Warfarin withdrawal: pharmacokinetic-pharmacodynamic considerations,” Clinical Pharmacokinetics, vol. 30, no. 4, pp. 300–313, 1996. View at Google Scholar · View at Scopus
  10. A. Fugh-Berman, “Herb-drug interactions,” The Lancet, vol. 355, no. 9198, pp. 134–138, 2000. View at Google Scholar · View at Scopus
  11. G. Valli and E.-G. V. Giardina, “Benefits, adverse effects and drug interactions of herbal therapies with cardiovascular effects,” Journal of the American College of Cardiology, vol. 39, no. 7, pp. 1083–1095, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Tachjian, V. Maria, and A. Jahangir, “Use of herbal products and potential interactions in patients with cardiovascular diseases,” Journal of the American College of Cardiology, vol. 55, no. 6, pp. 515–525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Huang, L.-J. Cui, Y.-H. Dou, and Y.-L. Wang, “Research on the interaction of mechanism between aspirin and human serum albumin,” Chinese Pharmacological Bulletin, vol. 24, no. 9, pp. 1192–1195, 2008. View at Google Scholar · View at Scopus
  14. É. A. Enyedy, E. Farkas, O. Dömötör, and M. A. Santos, “Interaction of folic acid and some matrix metalloproteinase (MMP) inhibitor folate-γ-hydroxamate derivatives with Zn(II) and human serum albumin,” Journal of Inorganic Biochemistry, vol. 105, no. 3, pp. 444–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kang, Y. Liu, M.-X. Xie, S. Li, M. Jiang, and Y.-D. Wang, “Interactions of human serum albumin with chlorogenic acid and ferulic acid,” Biochimica et Biophysica Acta, vol. 1674, no. 2, pp. 205–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Huang, L.-J. Cui, J.-M. Wang et al., “Comparative studies on interactions of baicalein, baicalin and scutellarin with lysozyme,” European Journal of Medicinal Chemistry, vol. 46, no. 12, pp. 6039–6045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Liu, X. Y. Yang, and F. Y. Yang, “Monitoring of warfarin concentration in postoperative patients for preventing thrombosis,” Northwest Pharmaceutical Journal, vol. 26, pp. 337–339, 2011. View at Google Scholar
  18. D. Yan, N. Zhao, X.-Y. Zhang, L. Yang, and B. Ma, “Pharmacokinetics and bioequivalence of sodium ferulate tablets in human,” Chinese Journal of New Drugs, vol. 17, no. 3, pp. 247–250, 2008. View at Google Scholar · View at Scopus
  19. Y. Huang, L.-J. Cui, J.-M. Wang et al., “Interaction of aconitine with bovine serum albumin and effect of atropine sulphate and glycyrrhizic acid on the binding,” Journal of Luminescence, vol. 132, no. 2, pp. 357–361, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. L. J. Cui, J. M. Wang, and K. Huo, “Atropine sulfate against toxicity of mesaconitine by fluorescence spectra,” Chinese Traditional and Herbal Drugs, vol. 43, pp. 1355–1360, 2012. View at Google Scholar
  21. N. Shahabadi and M. Maghsudi, “Binding studies of a new copper (II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods,” Journal of Molecular Structure, vol. 929, no. 1–3, pp. 193–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Yuan, A. M. Weljie, and H. J. Vogel, “Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding,” Biochemistry, vol. 37, no. 9, pp. 3187–3195, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. N. Miller, “Recent advances in molecular luminescence analysis,” Proceedings of the Analytical Division of the Chemical Society, vol. 16, pp. 203–208, 1979. View at Google Scholar
  24. B. Klajnert and M. Bryszewska, “Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin,” Bioelectrochemistry, vol. 55, no. 1-2, pp. 33–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. D. Ross and S. Subramanian, “Thermodynamics of protein association reactions: forces contributing to stability,” Biochemistry, vol. 20, no. 11, pp. 3096–3102, 1981. View at Google Scholar · View at Scopus
  26. P. O. Koh, “Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury,” PLoS ONE, vol. 8, no. 1, Article ID e54217, 2013. View at Publisher · View at Google Scholar