Table of Contents Author Guidelines Submit a Manuscript
Journal of Spectroscopy
Volume 2016, Article ID 4058478, 7 pages
http://dx.doi.org/10.1155/2016/4058478
Research Article

A Study of the Far Infrared Spectrum of N-Acetyl-D-Glucosamine Using THz-TDS, FTIR, and Semiempirical Quantum Chemistry Methods

1Departamento de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid, Spain
2Laboratorio de Materiales Avanzados, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
3Departamento de Teoría de la Señal y Comunicaciones, Universidad de Vigo, ETSI Telecomunicación, Lagoas Marcosende s/n, 36310 Vigo, Spain
4EPSH, Universidad de Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain

Received 15 February 2016; Revised 30 May 2016; Accepted 12 June 2016

Academic Editor: Stephen Cooke

Copyright © 2016 Pedro Chamorro-Posada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” Reactive and Functional Polymers, vol. 46, no. 1, pp. 1–27, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Zargar, M. Asghari, and A. Dashti, “A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications,” ChemBioEng Reviews, vol. 2, no. 3, pp. 204–226, 2015. View at Publisher · View at Google Scholar
  3. V. K. Thakur and M. K. Thakur, “Recent advances in graft copolymerization and applications of chitosan: a review,” ACS Sustainable Chemistry and Engineering, vol. 2, no. 12, pp. 2637–2652, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. L. N. Johnson, “The crystal structure of N-acetyl-α-d-glycosamine,” Acta Crystallographica, vol. 21, no. 6, pp. 885–891, 1966. View at Publisher · View at Google Scholar · View at Scopus
  5. C. F. Macrae, P. R. Edgington, P. McCabe et al., “Mercury: visualization and analysis of crystal structures,” Journal of Applied Crystallography, vol. 39, no. 3, pp. 453–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Husan, J. B. Hasted, D. Rosen, E. Nicol, and J. R. Birch, “FIR spectra of saccharides and polysaccharides,” Infrared Physics, vol. 24, no. 2-3, pp. 209–213, 1984. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chemical Physics, vol. 288, no. 2-3, pp. 261–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. C. Upadhya, Y. C. Shen, A. G. Davies, and E. H. Linfield, “Far-infrared vibrational modes of polycrystalline saccharides,” Vibrational Spectroscopy, vol. 35, no. 1-2, pp. 139–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. P. Scott and L. Radom, “Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors,” Journal of Physical Chemistry, vol. 100, no. 41, pp. 16502–16513, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. M. B. Coolidge, J. E. Marlin, and J. J. P. Stewart, “Calculations of molecular vibrational frequencies using semiempirical methods,” Journal of Computational Chemistry, vol. 12, no. 8, pp. 948–952, 1991. View at Publisher · View at Google Scholar
  11. Z. A. Fekete, E. A. Hoffmann, T. Körtvélyesi, and B. Penke, “Harmonic vibrational frequency scaling factors for the new NDDO Hamiltonians: RM1 and PM6,” Molecular Physics, vol. 105, no. 19–22, pp. 2597–2605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. C. Maia, G. A. Urquiza Carvalho, C. P. Mangueira Jr., S. R. Santana, L. A. F. Cabral, and G. B. Rocha, “GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations,” Journal of Chemical Theory and Computation, vol. 8, no. 9, pp. 3072–3081, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Chamorro-Posada, J. Vázquez-Cabo, F. M. Sánchez-Arévalo et al., “2D to 3D transition of polymeric carbon nitride nanosheets,” Journal of Solid State Chemistry, vol. 219, pp. 232–241, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Chamorro-Posada, J. Vázquez-Cabo, Ó. Rubiños-López et al., “THz TDS study of several sp2 carbon materials: graphite, needle coke and graphene oxides,” Carbon, vol. 98, pp. 484–490, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Kovács, B. Nyerges, and V. Izvekov, “Vibrational analysis of N-acetyl-α-d-glucosamine and β-d-glucuronic acid,” The Journal of Physical Chemistry B, vol. 112, no. 18, pp. 5728–5735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 2, no. 3, pp. 739–745, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Vázquez-Cabo, P. Chamorro-Posada, F. J. Fraile-Peláez, Ó. Rubiños-López, J. M. López-Santos, and P. Martín-Ramos, “Windowing of THz time-domain spectroscopy signals: a study based on lactose,” Optics Communications, vol. 366, pp. 386–396, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. P. Stewart, “Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements,” Journal of Molecular Modeling, vol. 13, no. 12, pp. 1173–1213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. P. Stewart, MOPAC2012, Stewart Computational Chemistry, Colorado Springs, Colo, USA, 2012.
  20. G. D. Dean and D. H. Martin, “Inter-molecular vibrations of crystalline polyethylene and long-chain paraffins,” Chemical Physics Letters, vol. 1, no. 9, pp. 415–416, 1967. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Applied Physics Letters, vol. 92, no. 2, Article ID 021107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters,” Journal of Molecular Modeling, vol. 19, no. 1, pp. 1–32, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Chamorro-Posada, “Study of the terahertz spectra of crystalline materials using NDDO semi-empirical methods: polyethylene, poly(vinylidene fluoride) form II and α-D-glucose,” https://arxiv.org/abs/1604.03919.