Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Journal of Spectroscopy
Volume 2016, Article ID 5428762, 17 pages
http://dx.doi.org/10.1155/2016/5428762
Research Article

Background Radiance Estimation for Gas Plume Quantification for Airborne Hyperspectral Thermal Imaging

1ONERA, The French Aerospace Lab, DOTA, 2 Avenue Edouard Belin, 31400 Toulouse, France
2Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France
3Telops Inc., 100-2600 St-Jean-Baptiste Avenue, Québec, QC, Canada G2E 6J5

Received 2 October 2015; Accepted 23 February 2016

Academic Editor: Hassen Aroui

Copyright © 2016 Ramzi Idoughi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Schlerf, G. Rock, P. Lagueux et al., “A hyperspectral thermal infrared imaging instrument for natural resources applications,” Remote Sensing, vol. 4, no. 12, pp. 3995–4009, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Hackwell, D. W. Warren, R. P. Bongiovi et al., “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, vol. 2819 of Proceedings of SPIE, pp. 102–107, Denver, Colo, USA, November 1996. View at Publisher · View at Google Scholar
  3. Y. Ferrec, S. Thétas, J. Primot et al., “Sieleters, an airborne imaging static fourier transform spectrometer: design and preliminary laboratory results,” in Proceedings of the Imaging and Applied Optics Congress, Paper FM1D-3, OSA, Arlington, Va, USA, June 2013.
  4. D. W. Messinger, S. S. Shen, and P. E. Lewis, “Gaseous plume detection in hyperspectral images: a comparison of methods,” in Proceedings of the SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, vol. 5425, pp. 592–603, Orlando, Fla, USA, August 2004. View at Publisher · View at Google Scholar
  5. L. Chilton and S. Walsh, “Detection of gaseous plumes using basis vectors,” Sensors, vol. 9, no. 5, pp. 3205–3217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Hirsch and E. Agassi, “Detection of gaseous plumes in IR hyperspectral images using hierarchical clustering,” Applied Optics, vol. 46, no. 25, pp. 6368–6374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1410–1420, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Thorpe, D. A. Roberts, P. E. Dennison, E. S. Bradley, and C. C. Funk, “Point source emissions mapping using the airborne visible/infrared imaging spectrometer (AVIRIS),” in Proceedings of the 18th Annual Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, vol. 8390, Baltimore, Md, USA, April 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Gittins, “Detection and characterization of chemical vapor fugitive emissions by nonlinear optimal estimation: theory and simulation,” Applied Optics, vol. 48, no. 23, pp. 4545–4561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. B. Gallagher, B. M. Wise, and D. M. Sheen, “Estimation of trace vapor concentration-pathlength in plumes for remote sensing applications from hyperspectral images,” Analytica Chimica Acta, vol. 490, no. 1-2, pp. 139–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Young, “Detection and quantification of gases in industrial-stack plumes using thermal-infrared hyperspectral imaging,” Tech. Rep. ATR-2002(8407)-1, The Aerospace Corporation, 2002. View at Google Scholar
  12. C. S. Turcotte and M. R. Davenport, “Gas plume quantification in downlooking hyperspectral longwave infrared images,” in Image and Signal Processing for Remote Sensing XVI, vol. 7830 of Proceedings of SPIE, Toulouse, France, September 2010. View at Publisher · View at Google Scholar
  13. P. Heasler, C. Posse, J. Hylden, and K. Anderson, “Nonlinear Bayesian algorithms for gas plume detection and estimation from Hyper-spectral thermal image data,” Sensors, vol. 7, no. 6, pp. 905–920, 2007. View at Google Scholar · View at Scopus
  14. S. Walsh, L. Chilton, M. Tardiff, and C. Metoyer, “Effect of the temperature-emissivity contrast on the chemical signal for gas plume detection using thermal image data,” Sensors, vol. 8, no. 10, pp. 6471–6483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. N. B. Gallagher, B. M. Wise, and D. M. Sheen, “Error analysis for estimation of trace vapor concentration pathlength in stack plumes,” Applied Spectroscopy, vol. 57, no. 6, pp. 614–621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. E. Golowich and D. G. Manolakis, “Cramer-Rao bounds for long-wave infrared gaseous plume quantification,” Optical Engineering, vol. 53, no. 2, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Theiler, B. R. Foy, and A. M. Fraser, “Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery,” in Defense and Security Symposium, vol. 6233 of Proceedings of SPIE, 2006.
  18. S. Niu, S. E. Golowich, V. K. Ingle, and D. G. Manolakis, “New approach to remote gas-phase chemical quantification: selected-band algorithm,” Optical Engineering, vol. 53, no. 2, Article ID 021111, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10 cm−1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, vol. 4577 of Proceedings of SPIE, pp. 12–24, Boston, Mass, USA, October 2001. View at Publisher · View at Google Scholar
  20. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Applied Spectroscopy, vol. 58, no. 12, pp. 1452–1461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Hayden, E. Niple, and B. Boyce, “Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra,” Applied Optics, vol. 35, no. 16, pp. 2802–2809, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sensing of Environment, vol. 113, no. 4, pp. 711–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Masson, L. Gomes, G. Pigeon et al., “The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment,” Meteorology and Atmospheric Physics, vol. 102, no. 3-4, pp. 135–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot, and Y. Boucher, “Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 7, pp. 1552–1561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Carruthers, R. J. Holroyd, J. C. R. Hunt et al., “UK-ADMS: a new approach to modelling dispersion in the earth's atmospheric boundary layer,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 52, pp. 139–153, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. Schott and C. Y. Chang, “Synthetic image generation of chemical plumes for hyperspectral applications,” Optical Engineering, vol. 39, no. 4, pp. 1047–1056, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977. View at Publisher · View at Google Scholar
  28. C. C. Borel, “Surface emissivity and temperature retrieval for a hyperspectral sensor,” in Proceedings of IEEE Conference on Geoscience and Remote Sensing, pp. 504–509, IEEE, July 1998. View at Scopus
  29. K. Kanani, L. Poutier, F. Nerry, and M. P. Stoll, “Directional effects consideration to improve out-doors emissivity retrieval in the 3–13 μm domain,” Optics Express, vol. 15, no. 19, pp. 12464–12482, 2007. View at Google Scholar