Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2009, Article ID 308985, 6 pages
http://dx.doi.org/10.1155/2009/308985
Research Article

Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

Proteomics Laboratory, Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India

Received 17 September 2008; Revised 22 December 2008; Accepted 10 February 2009

Academic Editor: Brad Upham

Copyright © 2009 Sahdeo Prasad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. G. van der Werf, “Assessing the impact of pesticides on the environment,” Agriculture, Ecosystems and Environment, vol. 60, no. 2-3, pp. 81–96, 1996. View at Publisher · View at Google Scholar
  2. D. G. Crosby, “Pesticides as environmental mutagens,” in Genetic Toxicology: An Agricultural Perspective, R. A. Fleck and A. Hollander, Eds., pp. 201–218, Plenum Press, New York, NY, USA, 1982. View at Google Scholar
  3. M. F. Simoniello, E. C. Kleinsorge, J. A. Scagnetti, R. A. Grigolato, G. L. Poletta, and M. A. Carballo, “DNA damage in workers occupationally exposed to pesticide mixtures,” Journal of Applied Toxicology, vol. 28, no. 8, pp. 957–965, 2008. View at Publisher · View at Google Scholar
  4. G. L. Poletta, A. Larriera, E. Kleinsorge, and M. D. Mudry, “Genotoxicity of the herbicide formulation Roundup® (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test,” Mutation Research, vol. 672, no. 2, pp. 95–102, 2009. View at Publisher · View at Google Scholar
  5. F. Lander, L. E. Knudsen, M. O. Gamborg, H. Jarventaus, and H. Norppa, “Chromosome aberrations in pesticide-exposed greenhouse workers,” Scandinavian Journal of Work, Environment and Health, vol. 26, no. 5, pp. 436–442, 2000. View at Google Scholar
  6. R. Meinert, J. Schüz, U. Kaletsch, P. Kaatsch, and J. Michaelis, “Leukemia and non-Hodgkin's lymphoma in childhood and exposure to pesticides: results of a register-based case-control study in Germany,” American Journal of Epidemiology, vol. 151, no. 7, pp. 639–646, 2000. View at Google Scholar
  7. B.-T. Ji, D. T. Silverman, P. A. Stewart et al., “Occupational exposure to pesticides and pancreatic cancer,” American Journal of Industrial Medicine, vol. 39, no. 1, pp. 92–99, 2001. View at Publisher · View at Google Scholar
  8. S. Zhao, A. Narang, J. Gierthy, and G. Eadon, “Detection and characterization of DNA adducts formed from metabolites of the fungicide ortho-phenylphenol,” Journal of Agricultural and Food Chemistry, vol. 50, no. 11, pp. 3351–3358, 2002. View at Publisher · View at Google Scholar
  9. A. Blair and S. H. Zahm, “Agricultural exposures and cancer,” Environmental Health Perspectives, vol. 103, supplement 8, pp. 205–208, 1995. View at Publisher · View at Google Scholar
  10. L. R. Webster, G. H. McKenzie, and H. T. Moriarty, “Organophosphate-based pesticides and genetic damage implicated in bladder cancer,” Cancer Genetics and Cytogenetics, vol. 133, no. 2, pp. 112–117, 2002. View at Publisher · View at Google Scholar
  11. T. Clary and B. Ritz, “Pancreatic cancer mortality and organochlorine pesticide exposure in California, 1989–1996,” American Journal of Industrial Medicine, vol. 43, no. 3, pp. 306–313, 2003. View at Publisher · View at Google Scholar
  12. M. Moriya, T. Ohta, K. Watanabe, T. Miyazawa, K. Kato, and Y. Shirasu, “Further mutagenicity studies on pesticides in bacterial reversion assay systems,” Mutation Research, vol. 116, no. 3-4, pp. 185–216, 1983. View at Publisher · View at Google Scholar
  13. D. Yüzbaşioğlu, “Cytogenetic effects of fungicide afugan on the meristematic cells of Allium cepa L.,” Cytologia, vol. 68, no. 3, pp. 237–243, 2003. View at Publisher · View at Google Scholar
  14. M. Çelik, F. Ünal, D. Yüzbaşioğlu, M. A. Ergün, O. Arslan, and R. Kasap, “In vitro effect of karathane LC (dinocap) on human lymphocytes,” Mutagenesis, vol. 20, no. 2, pp. 101–104, 2005. View at Publisher · View at Google Scholar
  15. S. Bonassi, A. Abbondandolo, L. Camurri et al., “Are chromosome aberrations in circulating lymphocytes predictive of future cancer onset in humans? Preliminary results of an Italian cohort study,” Cancer Genetics and Cytogenetics, vol. 79, no. 2, pp. 133–135, 1995. View at Publisher · View at Google Scholar
  16. L. Hagmar, S. Bonassi, U. Strömberg et al., “Chromosomal aberrations in lymphocytes predict human cancer: a report from the European study group on cytogenetic biomarkers and health (ESCH),” Cancer Research, vol. 58, no. 18, pp. 4117–4121, 1998. View at Google Scholar
  17. M. Fenech, “The in vitro micronucleus technique,” Mutation Research, vol. 455, no. 1-2, pp. 81–95, 2000. View at Publisher · View at Google Scholar
  18. B. D. Dimitrov, P. G. Gadeva, D. K. Benova, and M. V. Bineva, “Comparative genotoxicity of the herbicides Roundup, Stomp and Reglone in plant and mammalian test systems,” Mutagenesis, vol. 21, no. 6, pp. 375–382, 2006. View at Publisher · View at Google Scholar
  19. G. M. Williams, R. Kroes, and I. C. Munro, “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans,” Regulatory Toxicology and Pharmacology, vol. 31, no. 2, pp. 117–165, 2000. View at Publisher · View at Google Scholar
  20. G. A. Bresnahan, F. A. Manthey, K. A. Howatt, and M. Chakraborty, “Glyphosate applied preharvest induces shikimic acid accumulation in hard red spring wheat (Triticum aestivum),” Journal of Agricultural and Food Chemistry, vol. 51, no. 14, pp. 4004–4007, 2003. View at Publisher · View at Google Scholar
  21. D. J. Wilson, S. Patton, G. Florova, V. Hale, and K. A. Reynolds, “The shikimic acid pathway and polyketide biosynthesis,” Journal of Industrial Microbiology and Biotechnology, vol. 20, no. 5, pp. 299–303, 1998. View at Publisher · View at Google Scholar
  22. M. B. Lioi, M. R. Scarfi, A. Santoro et al., “Cytogenetic damage and induction of pro-oxidant state in human lymphocytes exposed in vitro to gliphosate, vinclozolin, atrazine, and DPX-E9636,” Environmental and Molecular Mutagenesis, vol. 32, no. 1, pp. 39–46, 1998. View at Publisher · View at Google Scholar
  23. M. Peluso, A. Munnia, C. Bolognesi, and S. Parodi, “P32-Postlabeling detection of DNA adducts in mice treated with the herbicide Roundup,” Environmental and Molecular Mutagenesis, vol. 31, no. 1, pp. 55–59, 1998. View at Publisher · View at Google Scholar
  24. L. P. Walsh, C. McCormick, C. Martin, and D. M. Stocco, “Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression,” Environmental Health Perspectives, vol. 108, no. 8, pp. 769–776, 2000. View at Publisher · View at Google Scholar
  25. J. Daruich, F. Zirulnik, and M. S. Gimenez, “Effect of the herbicide glyphosate on enzymatic activity in pregnant rats and their fetuses,” Environmental Research, vol. 85, no. 3, pp. 226–231, 2001. View at Publisher · View at Google Scholar
  26. E. Hietanen, K. Linnainmaa, and H. Vainio, “Effects of phenoxyherbicides and glyphosate on the hepatic and intestinal biotransformation activities in the rat,” Acta Pharmacologica et Toxicologica, vol. 53, no. 2, pp. 103–112, 1983. View at Google Scholar
  27. A. P. Li and T. J. Long, “An evaluation of the genotoxic potential of glyphosate,” Fundamental and Applied Toxicology, vol. 10, no. 3, pp. 537–546, 1988. View at Publisher · View at Google Scholar
  28. J. Rank, A.-G. Jensen, B. Skov, L. H. Pedersen, and K. Jensen, “Genotoxicity testing of the herbicide Roundup and its active ingredient glyphosate isopropylamine using the mouse bone marrow micronucleus test, Salmonella mutagenicity test, and Allium anaphase-telophase test,” Mutation Research, vol. 300, no. 1, pp. 29–36, 1993. View at Google Scholar
  29. C. Clements, S. Ralph, and M. Petras, “Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (Comet) assay,” Environmental and Molecular Mutagenesis, vol. 29, no. 3, pp. 277–288, 1997. View at Publisher · View at Google Scholar
  30. P. G. Kale, B. T. Petty Jr., S. Walker et al., “Mutagenicity testing of nine herbicides and pesticides currently used in agriculture,” Environmental and Molecular Mutagenesis, vol. 25, no. 2, pp. 148–153, 1995. View at Publisher · View at Google Scholar
  31. U.S. EPA, “U.S. Environmental Protection Agency Reregistration Eligibility Decision (RED) Glyphosate,” EPA-738-R-93-014, U.S. Environmental Protection Agency, Washington, DC, USA, 1993. View at Google Scholar
  32. WHO, “International programme on chemical safety. Glyphosate,” Environmental Health Criteria 159, World Health Organization, Geneva, Switzerland, 1994. View at Google Scholar
  33. B. Kaya, A. Yanikoğlu, A. Creus, and R. Marcos, “Genotoxicity testing of five herbicides in the Drosophila wing spot test,” Mutation Research, vol. 465, no. 1-2, pp. 77–84, 2000. View at Publisher · View at Google Scholar
  34. C. M. Monroy, A. C. Cortés, D. M. Sicard, and H. G. de Restrepo, “Cytotoxicity and enotoxicity of human cells exposed in vitro to glyphosate,” Biomédica, vol. 25, no. 3, pp. 335–345, 2005. View at Google Scholar
  35. R. J. Preston, B. J. Dean, S. Galloway, H. Holden, A. F. McFee, and M. Shelby, “Mammalian in vivo cytogenetic assays. Analysis of chromosome aberrations in bone marrow cells,” Mutation Research, vol. 189, no. 2, pp. 157–165, 1987. View at Publisher · View at Google Scholar
  36. W. Schmid, “The micronucleus test,” Mutation Research, vol. 31, no. 1, pp. 9–15, 1975. View at Google Scholar
  37. C. Cox, “Glyphosate (Roundup),” in Global Pesticide Campaigner, E. Hickey, Ed., vol. 9, pp. 12–19, Pesticide Action Network (PAN): North America, San Francisco, Calif, USA, 1999. View at Google Scholar
  38. K. Šiviková and J. Dianovský, “Cytogenetic effect of technical glyphosate on cultivated bovine peripheral lymphocytes,” International Journal of Hygiene and Environmental Health, vol. 209, no. 1, pp. 15–20, 2006. View at Publisher · View at Google Scholar
  39. J. A. Heddle, M. C. Cimino, M. Hayashi et al., “Micronuclei as an index of cytogenetic damage: past, present, and future,” Environmental and Molecular Mutagenesis, vol. 18, no. 4, pp. 277–291, 1991. View at Publisher · View at Google Scholar