Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2011, Article ID 543512, 14 pages
http://dx.doi.org/10.1155/2011/543512
Research Article

Domoic Acid-Induced Neurotoxicity Is Mainly Mediated by the AMPA/KA Receptor: Comparison between Immature and Mature Primary Cultures of Neurons and Glial Cells from Rat Cerebellum

1Environmental Health Science, School of Public Health, The Johns Hopkins University, Baltimore, MD 21205-2103, USA
2Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, W7032 Baltimore, MD 21205, USA
3In-Vitro Methods Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra (VA), Italy

Received 14 July 2011; Accepted 24 August 2011

Academic Editor: Lucio Guido Costa

Copyright © 2011 Helena T. Hogberg and Anna K. Bal-Price. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Xi, Y. G. Peng, and J. S. Ramsdell, “Domoic acid is a potent neurotoxin to neonatal rats,” Natural Toxins, vol. 5, no. 2, pp. 74–79, 1997. View at Google Scholar · View at Scopus
  2. A. L. Adams, T. A. Doucette, R. James, and C. L. Ryan, “Persistent changes in learning and memory in rats following neonatal treatment with domoic acid,” Physiology and Behavior, vol. 96, no. 4-5, pp. 505–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Dakshinamurti, S. K. Sharma, M. Sundaram, and T. Watanabe, “Hippocampal changes in developing postnatal mice following intrauterine exposure to domoic acid,” Journal of Neuroscience, vol. 13, no. 10, pp. 4486–4495, 1993. View at Google Scholar · View at Scopus
  4. T. A. Doucette, S. M. Strain, G. V. Allen, C. L. Ryan, and R. A. R. Tasker, “Comparative behavioural toxicity of domoic acid and kainic acid in neonatal rats,” Neurotoxicology and Teratology, vol. 22, no. 6, pp. 863–869, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. E. D. Levin, K. Pizarro, W. G. Pang, J. Harrison, and J. S. Ramsdell, “Persisting behavioral consequences of prenatal domoic acid exposure in rats,” Neurotoxicology and Teratology, vol. 27, no. 5, pp. 719–725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Maucher and J. S. Ramsdell, “Maternal-fetal transfer of domoic acid in rats at two gestational time points,” Environmental health perspectives, vol. 115, no. 12, pp. 1743–1746, 2007. View at Google Scholar · View at Scopus
  7. J. M. Maucher and J. S. Ramsdell, “Domoic acid transfer to milk: evaluation of a potential route of neonatal exposure,” Environmental Health Perspectives, vol. 113, no. 4, pp. 461–464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Dakshinamurti, S. K. Sharma, and M. Sundaram, “Domoic acid induced seizure activity in rats,” Neuroscience Letters, vol. 127, no. 2, pp. 193–197, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Qiu, C. W. Pak, and M. C. Currás-Collazo, “Sequential involvement of distinct glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures: effect of multiple dose/duration paradigms, chronological age, and repeated exposure,” Toxicological Sciences, vol. 89, no. 1, pp. 243–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. F. W. Berman and T. F. Murray, “Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release,” Journal of Neurochemistry, vol. 69, no. 2, pp. 693–703, 1997. View at Google Scholar · View at Scopus
  11. F. W. Berman, K. T. LePage, and T. F. Murray, “Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca2+ influx pathway,” Brain Research, vol. 924, no. 1, pp. 20–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ankarcrona, J. M. Dypbukt, E. Bonfoco et al., “Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function,” Neuron, vol. 15, no. 4, pp. 961–973, 1995. View at Google Scholar · View at Scopus
  13. E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera, and S. A. Lipton, “Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7162–7166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Giordano, C. C. White, L. A. McConnachie, C. Fernandez, T. J. Kavanagh, and L. G. Costa, “Neurotoxicity of domoic acid in cerebellar granule neurons in a genetic model of glutathione deficiency,” Molecular Pharmacology, vol. 70, no. 6, pp. 2116–2126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I. A. Ross, W. Johnson, P. P. Sapienza, and C. S. Kim, “Effects of the seafood toxin domoic acid on glutamate uptake by rat astrocytes,” Food and Chemical Toxicology, vol. 38, no. 11, pp. 1005–1011, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Mayer, M. Hall, M. J. Fay et al., “Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia,” BMC Pharmacology, vol. 1, no. 1, article 7, 2001. View at Google Scholar · View at Scopus
  17. H. T. Hogberg, A. Kinsner-Ovaskainen, T. Hartung, S. Coecke, and A. K. Bal-Price, “Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides,” Toxicology and Applied Pharmacology, vol. 235, no. 3, pp. 268–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. T. Hogberg, A. Kinsner-Ovaskainen, S. Coecke, T. Hartung, and A. K. Bal-Price, “mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach,” Toxicological Sciences, vol. 113, no. 1, pp. 95–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kinsner, V. Pilotto, S. Deininger et al., “Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation,” Journal of Neurochemistry, vol. 95, no. 4, pp. 1132–1143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Privat, M. J. Drian, and P. Mandon, “Synaptogenesis in the outgrowth of rat cerebellum in organized culture,” Journal of Comparative Neurology, vol. 153, no. 3, pp. 291–307, 1974. View at Google Scholar · View at Scopus
  21. J. O'Brien, I. Wilson, T. Orton, and F. Pognan, “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity,” European Journal of Biochemistry, vol. 267, no. 17, pp. 5421–5426, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Göritz, D. H. Mauch, K. Nägler, and F. W. Pfrieger, “Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse-glia affair,” Journal of Physiology Paris, vol. 96, no. 3-4, pp. 257–263, 2002. View at Publisher · View at Google Scholar
  24. M. E. Hatten and R. K. H. Liem, “Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro,” Journal of Cell Biology, vol. 90, no. 3, pp. 622–630, 1981. View at Google Scholar · View at Scopus
  25. F. W. Pfrieger and B. A. Barres, “Synaptic efficacy enhanced by glial cells in vitro,” Science, vol. 277, no. 5332, pp. 1684–1687, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. L. C. Wang, D. H. Baird, M. E. Hatten, and C. A. Mason, “Astroglial differentiation is required for support of neurite outgrowth,” Journal of Neuroscience, vol. 14, no. 5, pp. 3195–3207, 1994. View at Google Scholar · View at Scopus
  27. G. A. Brook, A. Pérez-Bouza, J. Noth, and W. Nacimiento, “Astrocytes re-express nestin in deafferented target territories of the adult rat hippocampus,” NeuroReport, vol. 10, no. 5, pp. 1007–1011, 1999. View at Google Scholar · View at Scopus
  28. M. Kálmán and B. M. Ajtai, “A comparison of intermediate filament markers for presumptive astroglia in the developing rat neocortex: immunostaining against nestin reveals more detail, than GFAP or vimentin,” International Journal of Developmental Neuroscience, vol. 19, no. 1, pp. 101–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. R. C. S. Lin, D. F. Matesic, M. Marvin, R. D. G. McKay, and O. Brüstle, “Re-expression of the intermediate filament nestin in reactive astrocytes,” Neurobiology of Disease, vol. 2, no. 2, pp. 79–85, 1995. View at Google Scholar · View at Scopus
  30. S. N. Kolbaev, I. N. Sharonova, V. S. Vorob'ev, and V. G. Skrebitskii, “Mechanisms of tacrine modulation of the GABA-activated currents in the isolated cerebellar neurons,” Biulleten' Eksperimental'noi Biologii i Meditsiny, vol. 127, no. 5, pp. 539–542, 1999. View at Google Scholar · View at Scopus
  31. G. Giordano, C. C. White, I. Mohar, T. J. Kavanagh, and L. G. Costa, “Glutathione levels modulate domoic acid-induced apoptosis in mouse cerebellar granule cells,” Toxicological Sciences, vol. 100, no. 2, pp. 433–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Dakshinamurti, S. K. Sharma, and J. D. Geiger, “Neuroprotective actions of pyridoxine,” Biochimica et Biophysica Acta, vol. 1647, no. 1-2, pp. 225–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. H. T. Hogberg, T. Sobanski, A. Novellino, M. Whelan, D. G. Weiss, and A. K. Bal-Price, “Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons,” NeuroToxicology, vol. 32, no. 1, pp. 158–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Miao, Y. Qiu, Y. Lin, Z. Miao, J. Zhang, and X. Lu, “Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism,” Molecular Biology Reports, vol. 38, no. 5, pp. 3235–3242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. S. Mayer, “The marine toxin domoic acid may affect the developing brain by activation of neonatal brain microglia and subsequent neurotoxic mediator generation,” Medical Hypotheses, vol. 54, no. 5, pp. 837–841, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Bal-Price and G. C. Brown, “Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity,” Journal of Neuroscience, vol. 21, no. 17, pp. 6480–6491, 2001. View at Google Scholar · View at Scopus
  37. L. W. Chen, L. C. Wei, Y. Qiu et al., “Significant up-regulation of nestin protein in the neostriatum of MPTP-treated mice: are the striatal astrocytes regionally activated after systemic MPTP administration?” Brain Research, vol. 925, no. 1, pp. 9–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. R. Clarke, A. K. Shetty, J. L. Bradley, and D. A. Turner, “Reactive astrocytes express the embryonic intermediate neurofilament nestin,” NeuroReport, vol. 5, no. 15, pp. 1885–1888, 1994. View at Google Scholar · View at Scopus
  39. J. T. Rutka, S. Ivanchuk, S. Mondal et al., “Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells,” International Journal of Developmental Neuroscience, vol. 17, no. 5-6, pp. 503–515, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. A. P. Ardais, G. G. Viola, M. S. Costa et al., “Acute treatment with diphenyl diselenide inhibits glutamate uptake into rat hippocampal slices and modifies glutamate transporters, SNAP-25, and GFAP immunocontent,” Toxicological Sciences, vol. 113, no. 2, pp. 434–443, 2009. View at Publisher · View at Google Scholar
  41. A. Swarowsky, L. Rodrigues, R. Biasibetti et al., “Glial alterations in the hippocampus of rats submitted to ibotenic-induced lesion of the nucleus basalis magnocellularis,” Behavioural Brain Research, vol. 190, no. 2, pp. 206–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Muramatsu, R. Kurosaki, H. Watanabe et al., “Expression of S-100 protein is related to neuronal damage in MPTP-treated mice,” GLIA, vol. 42, no. 3, pp. 307–313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Patro, M. Shrivastava, S. Tripathi, and I. K. Patro, “S100β upregulation: a possible mechanism of deltamethrin toxicity and motor coordination deficits,” Neurotoxicology and Teratology, vol. 31, no. 3, pp. 169–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Bianchi, C. Adami, I. Giambanco, and R. Donato, “S100B binding to RAGE in microglia stimulates COX-2 expression,” Journal of Leukocyte Biology, vol. 81, no. 1, pp. 108–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. G. Sheng, R. E. Mrak, and W. S. T. Griffin, “Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1α+ microglia and S100β+ astrocytes with neurofibrillary tangle stages,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 3, pp. 285–290, 1997. View at Google Scholar · View at Scopus
  46. M. C. Royston, J. E. McKenzie, S. M. Gentleman et al., “Overexpression of S100β in Down's syndrome: correlation with patient age and with β-amyloid deposition,” Neuropathology and Applied Neurobiology, vol. 25, no. 5, pp. 387–393, 1999. View at Publisher · View at Google Scholar
  47. R. Allore, D. O'Hanlon, R. Price et al., “Gene encoding the β subunit of S100 protein is on chromosome 21: implications for Down syndrome,” Science, vol. 239, no. 4845, pp. 1311–1313, 1988. View at Google Scholar · View at Scopus