Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2011, Article ID 832519, 11 pages
http://dx.doi.org/10.1155/2011/832519
Research Article

Early Effects of Long-Term Neurotoxic Lead Exposure in Copper Works Employees

Institute of Occupational Medicine, Otto-von-Guericke University, D-39120 Magdeburg, Germany

Received 8 February 2011; Accepted 18 March 2011

Academic Editor: Ana-Maria Florea

Copyright © 2011 Irina Böckelmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Muzi, N. Murgia, M. Dell'Omo et al., “Effects of inorganic lead exposure on the autonomic nervous system and on the variability of heart rate among workers at a battery plant,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 27, pp. 46–50, 2005. View at Google Scholar
  2. E. Arnvig, P. Grandjean, and J. Beckmann, “Neurotoxic effects of heavy lead exposure determined with psychological tests,” Toxicology Letters, vol. 5, no. 6, pp. 399–404, 1980. View at Publisher · View at Google Scholar · View at Scopus
  3. E. L. Baker, R. G. Feldman, R. F. White, and J. P. Harley, “The role of occupational lead exposure in the genesis of psychiatric and behavioral disturbances,” Acta Psychiatrica Scandinavica, vol. 67, no. 303, pp. 38–48, 1983. View at Google Scholar · View at Scopus
  4. E. L. Baker, R. G. Feldman, and R. A. White, “Occupational lead neurotoxicity: a behavioural and electrophysiological evaluation. study design and year one results,” British Journal of Industrial Medicine, vol. 41, no. 3, pp. 352–361, 1984. View at Google Scholar
  5. E. L. Baker, R. A. White, and L. J. Pothier, “Occupational lead neurotoxicity: a behavioural and electrophysiological evaluation,” British Journal of Industrial Medicine, vol. 42, no. 8, pp. 507–516, 1985. View at Google Scholar
  6. A. M. Seppäläinen, S. Hernberg, R. Vesanto, and B. Kock, “Early neurotoxic effects of occupational lead exposure: a prospective study,” Neurotoxicology, vol. 4, no. 2, pp. 181–192, 1983. View at Google Scholar · View at Scopus
  7. A. Seeber, H. Dotzauer, and H. Schneider, “Psychodiagnostik bei Blei-, Quecksilber- und Manganexposition—ein Erfahrungsbericht,” Zeitschrift fur die gesamte Hygiene, vol. 30, no. 12, pp. 702–706, 1984. View at Google Scholar · View at Scopus
  8. G. Winneke, “Subklinische Wirkungen von Blei auf das Nervensystem von Kindern,” Nervenheilkunde, vol. 8, no. 2, pp. 80–85, 1989. View at Google Scholar · View at Scopus
  9. G. Winneke, A. Brockhaus, U. Ewers, U. Krämer, and M. Neuf, “Results from the European multicenter study on lead neurotoxicity in children: implications for risk assessment,” Neurotoxicology and Teratology, vol. 12, no. 5, pp. 553–559, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Dotzauer, “Bleiexposition und psychische Leistungen. Ein Diskussionsbeitrag zu Dosis-Wirkungsbeziehungen nach kurzer Expositionsdauer,” Zeitschrift fur die Gesamte Hygiene und Ihre Grenzgebiete, vol. 36, no. 5, pp. 271–273, 1990. View at Google Scholar · View at Scopus
  11. I. Böckelmann and E. Pfister, “Nejrotoksitscheskie effekty mnogoletnei ekspositsii svintsom,” Med-Tr-Prom-Ekol, vol. 5, pp. 22–26, 2001. View at Google Scholar
  12. M. Meyer-Baron and A. Seeber, “A meta-analysis for neurobehavioural results due to occupational lead exposure with blood lead concentrations > 70 μg/100 ml,” Archives of Toxicology, vol. 73, no. 10-11, pp. 510–518, 2000. View at Google Scholar · View at Scopus
  13. A. Iregren, “Psychological test performance in foundry workers exposed to low levels of manganese,” Neurotoxicology and Teratology, vol. 12, no. 6, pp. 673–675, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Seeber, E. Kiesswetter, B. Neidhart, and M. Blaszkewicz, “Neurobehavioral effects of a long-term exposure to tetraalkyllead,” Neurotoxicology and Teratology, vol. 12, no. 6, pp. 653–655, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Lucchini, E. Albini, I. Cortesi et al., “Assessment of neurobehavioral performance as a function of as current and cumulative occupational lead exposure,” Neurotoxicology, vol. 21, no. 5, pp. 805–812, 2000. View at Google Scholar · View at Scopus
  16. H. Hänninen, S. Hernberg, P. Mantere, R. Vesanto, and M. Jalkanen, “Psychological performance of subjects with low exposure to lead,” Journal of Occupational Medicine, vol. 20, no. 10, pp. 683–689, 1978. View at Google Scholar · View at Scopus
  17. A. M. Seppäläainen, “Neurophysiological approaches to the detection of early neurotoxicity in humans,” Critical Reviews in Toxicology, vol. 18, no. 4, pp. 245–298, 1988. View at Google Scholar · View at Scopus
  18. M. G. Cassitto, R. Gilioli, and D. Camerino, “Experiences with the Milan automated neurobehavioral system (MANS) in occupational neurotoxic exposure,” Neurotoxicology and Teratology, vol. 11, no. 6, pp. 571–574, 1989. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Winneke, “Comparing the effects of perinatal and later childhood lead exposure on neuropsychological outcome,” Environmental Research, vol. 38, no. 1, pp. 155–167, 1985. View at Google Scholar · View at Scopus
  20. W. K. Anger, “Worksite behavioral research: results, sensitive methods, test tatteries and the transition from laboratory data to human health,” Neurotoxicology, vol. 11, no. 4, pp. 629–717, 1990. View at Google Scholar · View at Scopus
  21. K. W. Boey and J. Jeyaratnam, “A discriminant analysis of neuropsychological effect of low lead exposure,” Toxicology, vol. 49, no. 2-3, pp. 309–314, 1988. View at Google Scholar · View at Scopus
  22. H. Dotzauer and H. Wall, “Beziehungen zwischen innerer Bleibelastung und psychischen Leistungen nach arbeitsmedizinischen Interventionen,” Zeitschrift für die Gesamte Hygiene, vol. 37, pp. 31–34, 1991. View at Google Scholar
  23. B. T. Stollery, D. E. Broadbent, H. A. Banks, and W. R. Lee, “Short term prospective study of cognitive functioning in lead workers,” British Journal of Industrial Medicine, vol. 48, no. 11, pp. 739–749, 1991. View at Google Scholar · View at Scopus
  24. S. Araki, K. Murata, and H. Aono, “Central and peripheral nervous system dysfunction in workers exposed to lead, zinc and copper. a follow-up study of visual and somatosensory evoked potentials,” International Archives of Occupational and Environmental Health, vol. 59, no. 2, pp. 177–187, 1987. View at Google Scholar · View at Scopus
  25. K. Murata, S. Araki, K. Yokoyama, E. Uchida, and Y. Fujimura, “Assessment of central, peripheral, and autonomic nervous system functions in lead workers: neuroelectrophysiological studies,” Environmental Research, vol. 61, no. 2, pp. 323–336, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. Hirata and H. Kosaka, “Effects of lead exposure on neurophysiological parameters,” Environmental Research, vol. 63, no. 1, pp. 60–69, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. Abbate, R. Buceti, F. Munao, C. Giorgianni, and G. Ferreri, “Neurotoxicity induced by lead levels: an electrophysiological study,” International Archives of Occupational and Environmental Health, vol. 66, no. 6, pp. 389–392, 1995. View at Publisher · View at Google Scholar
  28. S. Araki, K. Murata, K. Yokoyama, and E. Uchida, “Auditory event-related potential (P300) in relation to peripheral nerve conduction in workers exposed to lead, zinc, and copper: effects of lead on cognitive function and central nervous system,” American Journal of Industrial Medicine, vol. 21, no. 4, pp. 539–547, 1992. View at Google Scholar · View at Scopus
  29. H. Lilienthal, Die Wirkung subtoxischer Bleibelastung auf akustisch evozierte Hirnstammpotentiale—Untersuchungen an einem Primatenmodell, Verlag für Wissenschaft, Forschung und Technik, Wermelskirchen, Germany, 1992.
  30. P. J. Landrigan, “Current issues in the epidemiology and toxicology of occupational exposure to lead,” Environmental Health Perspectives, vol. 89, pp. 61–66, 1990. View at Google Scholar · View at Scopus
  31. P. J. Landrigan, “Lead in the modern workplace,” American Journal of Public Health, vol. 80, no. 8, pp. 907–908, 1990. View at Google Scholar · View at Scopus
  32. P. J. Landrigan, “Strategies for epidemiologie studies of lead in bone in occup,” Environmental Health Perspectives, vol. 91, pp. 81–86, 1991. View at Google Scholar
  33. S. Araki, K. Yokoyama, K. Murata, and H. Aono, “Determination of the distribution of conduction velocities in workers exposed to lead, zinc, and copper,” British Journal of Industrial Medicine, vol. 43, no. 5, pp. 321–326, 1986. View at Google Scholar · View at Scopus
  34. S. Araki, K. Yokoyama, H. Aono, and K. Murata, “Psychological performance in relation to central and peripheral nerve conduction in workers exposed to lead, zinc, and copper,” American Journal of Industrial Medicine, vol. 9, no. 6, pp. 535–542, 1986. View at Google Scholar · View at Scopus
  35. G. H. Spivey, R. W. Baloh, C. P. Brown et al., “Subclinical effects of chronic increased lead absorption—a prospective study. III. neurologic findings at follow-up examination,” Journal of Occupational Medicine, vol. 22, no. 9, pp. 607–612, 1980. View at Google Scholar
  36. G. Triebig, D. Weltle, and H. Valentin, “Investigations on neurotoxicity of chemical substances at the workplace,” International Archives of Occupational and Environmental Health, vol. 53, no. 3, pp. 189–204, 1984. View at Google Scholar · View at Scopus
  37. Y. Ogawa, M. Hirata, A. Okayama, Y. E. Ichikawa, and S. Goto, “Latency of the achilles tendon reflex for detection of reduced functions of the peripheral nervous system in workers exposed to lead,” British Journal of Industrial Medicine, vol. 50, no. 3, pp. 229–233, 1993. View at Google Scholar · View at Scopus
  38. B. T. Stollery, H. A. Banks, D. E. Broadbent, and W. R. Lee, “Cognitive functioning in lead workers,” British Journal of Industrial Medicine, vol. 46, no. 10, pp. 698–707, 1989. View at Google Scholar · View at Scopus
  39. P. Bjetak, Subklinische Bleiexposition und Leistungsverminderung intellektueller und motorischer Funktionen des ZNS, Ph. D. dissertations, University of Vienna, Vienna, Austria, 1987.
  40. M. L. Urbano, L. Di Lorenzo, A. Russo et al., “Assessment of neurobehavioral functions in workers exposed to low doses of metallic lead,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 27, no. 1, pp. 62–67, 2005. View at Google Scholar · View at Scopus
  41. S. K. Park, M. S. O'Neill, P. S. Vokonas et al., “Air pollution and heart rate variability: effect modification by chronic lead exposure,” Epidemiology, vol. 19, no. 1, pp. 111–120, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. R. Poreba, M. Poreba, P. Gac et al., “Electrocardiographic changes in workers occupationally exposed to lead,” Annals of Noninvasive Electrocardiology, vol. 16, no. 1, pp. 33–40, 2011. View at Publisher · View at Google Scholar · View at PubMed
  43. H.-J. Jhun, H. Kim, and D.-M. Paek, “The association between blood metal concentrations and heart rate variability: a cross-sectional study,” International Archives of Occupational and Environmental Health, vol. 78, no. 3, pp. 243–247, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. S. K. Park, J. Schwartz, M. Weisskopf et al., “Low-level lead exposure, metabolic syndrome, and heart rate variability: the VA normative aging study,” Environmental Health Perspectives, vol. 114, no. 11, pp. 1718–1724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Murata and S. Araki, “Autonomic nervous system dysfunction in workers exposed to lead, zinc, and copper in relation to peripheral nerve conduction: a study of R-R interval variability,” American Journal of Industrial Medicine, vol. 20, no. 5, pp. 663–671, 1991. View at Google Scholar · View at Scopus
  46. K. Teruya, H. Sakurai, K. Omar, T. Higashi, T. Muto, and Y. Kaneko, “Effect of lead on cardiac parasympathetic function,” International Archives of Occupational and Environmental Health, vol. 62, no. 8, pp. 549–553, 1991. View at Google Scholar · View at Scopus
  47. A. Muttray, D. Jung, M. Spüller, C. Wildt, O. Mayer-Popken, and J. Konietzko, “Zur Wirkung von Blei auf die autonome Innervation des Herzens,” in Arbeitsmedizin für eine gesunde Umwelt. 31. Jahrestagung in Berlin vom 11, vol. 1991, pp. 175–177, Gentner, Stuttgart, Germany, 1991. View at Google Scholar
  48. E. Pfister, I. Böckelmann, M. Brosz, and T. Ferl, “Das Herzrhythmusverhalten als Frühindikator einer bleibedingten Neurotoxizität,” Zbl Arbeitsmed, vol. 45, no. 9, pp. 366–375, 1995. View at Google Scholar · View at Scopus
  49. E. Pfister, I. Böckelmann, and T. Ferl, “Vegetative function diagnosis for early detection of lead intoxication,” International Archives of Occupational and Environmental Health, vol. 69, no. 1, pp. 14–20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Böckelmann, E. A. Pfister, N. McGauran, and B. P. Robra, “Assessing the suitability of cross-sectional and longitudinal cardiac rhythm tests with regard to identifying effects of occupational chronic lead exposure,” Journal of Occupational and Environmental Medicine, vol. 44, no. 1, pp. 59–65, 2002. View at Google Scholar · View at Scopus
  51. J. Gennart, A. Bernard, and R. Lauwerys, “Assessment of thyroid, testes, kidney and autonomic nervous system function in lead-exposed workers,” International Archives of Occupational and Environmental Health, vol. 64, no. 1, pp. 49–57, 1992. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Gajek, D. Zyśko, and E. Chlebda, “Heart rate variability in workers chronically exposed to lead,” Kardiologia Polska, vol. 61, no. 7, pp. 21–30, 2004. View at Google Scholar · View at Scopus
  53. A. Navas-Acien, E. Guallar, E. K. Silbergeld, and St. J. Rothenberg, “Lead exposure and cardiovascular disease—a systematic review,” Environmental Health Perspectives, vol. 115, no. 3, pp. 472–482, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. Fahrenberg, “Die Bedeutung individueller Unterschiede für die Methodik der Aktivierungsforschung,” Huber, pp. 95–122, 1969. View at Google Scholar
  55. M. L. Bleecker, K. I. Bolla, J. Agnew, B. S. Schwartz, and D. P. Ford, “Dose-related subclinical neurobehavioral effects of chronic exposure to low levels of organic solvents,” American Journal of Industrial Medicine, vol. 19, no. 6, pp. 715–728, 1991. View at Google Scholar · View at Scopus
  56. A. Iregren and F. Gamberale, “Human behavioral toxicology,” Central Nervous Effects of Low-Dose Exposure to Neurotoxic Substances in the Work Environment, vol. 16, supplement 1, pp. 17–25, 1990. View at Google Scholar · View at Scopus
  57. F. Gamberale, A. Iregren, and A. Kjellberg, SPES the computerized Swedish performance evaluation system. background, critical issues, empirical data, and a users manual, vol. 6 of arbete och Hälsa, National Institute of occupational, Sweden, 1989.
  58. A. Iregren, F. Gamberale, and A. Kjellberg, “SPES: a psychological test system to diagnose environmental hazards,” Neurotoxicology and Teratology, vol. 18, no. 4, pp. 485–491, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Weber, H. Regel, H. Leo, and A. Krause, “COMBITEST 2—ein Gerätesystem für die apparative psychodiagnostik,” Z Klin Med, vol. 42, pp. 1821–1825, 1987. View at Google Scholar
  60. I. Böckelmann, Arbeitsmedizinische Fragen zur Neurotoxizität Beruflicher Blei- und Lösemittelexposition, Otto-von-Guericke-Universität, Magdeburg, Germany, 2006.
  61. K. Eckoldt, “Verfahren und Ergebnisse der quantitativen automatischen Analyse der Herzfrequenz und deren Spontanvariabilität,” Dt Gesund wes, vol. 39, pp. 856–863, 1984. View at Google Scholar
  62. “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (Membership of the Task Force listed in the Appendix),” European Heart Journal, vol. 17, no. 3, pp. 354–381, 1996.
  63. J. R. Nitsch, “Die hierarchische Struktur des Eigenzustandes—ein Approximationsverfahren mit Hilfe der Binärstrukturanalyse (Bistran),” Diagnostica, vol. 20, pp. 142–164, 1974. View at Google Scholar
  64. J. R. Nitsch, “Die Eigenzustandsskala (EZ-Skala)—ein Verfahren zur hierarchisch mehrdimensionalen Befindlichkeitsskalierung,” in Beanspruchung im Sport, J. R. Nitsch and I. Udris, Eds., pp. 81–102, Bad Homburg: Limpert, Germany, 1976. View at Google Scholar
  65. A. Seeber, “Grundlagen der Verhaltenstoxikologie. Arbmed Sozmed Prävmed,” Sonderheft, vol. 25, pp. 6–14, 1998. View at Google Scholar
  66. W. Laube, K. Eckoldt, and E. Schubert, “Das Verhalten der Herzschlagfrequenz und Sinusarrhythmie bei untrainierten Schülern und Schülerinnen der Altersklassen 13, 15 und 16 vor während und nach einer standardisierten Fahrradergometerbelastung,” Dt Gesund wes, pp. 839–880, 1984. View at Google Scholar
  67. E. Pfister, Die Bestimmung der dynamischen Dauerleistungsfähigkeit Jugendlicher beim Einsatz unterschiedlicher Muskelmassen zur Begründung von Grenzwerten der physischen Belastbarkeit im 16. bis 18, Med. Akademie, Habil, Magdeburg, Germany, 1990.
  68. F. H. Kemper, R. Eckard, H. P. Bertram, and C. Müller, Umweltprobenbank für Human-Organproben, Münster, 1992.
  69. H. Lilienthal, G. Winneke, and T. Ewert, “Effects of lead on neurophysiological and performance measures: animal and human data,” Environmental Health Perspectives, vol. 89, pp. 21–25, 1990. View at Google Scholar · View at Scopus
  70. V. Schwarz, “Die Beeinflussung der Herzfrequenz und der Sinusarrhythmie durch pharmakologische Vagusblockade in Ruhe und bei ergometrischer Belastung,” Medizin und Sport, vol. 17, no. 5, pp. 148–149, 1977. View at Google Scholar · View at Scopus
  71. R. Andrzejak, R. Poreba, and A. Derkacz, “Effect of chronic lead poisoning on the parameters of heart rate variability,” Medycyna Pracy, vol. 55, no. 2, pp. 139–144, 2004. View at Google Scholar · View at Scopus