Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012, Article ID 546915, 20 pages
http://dx.doi.org/10.1155/2012/546915
Review Article

The Redox System in C. elegans, a Phylogenetic Approach

School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia

Received 31 March 2012; Revised 28 May 2012; Accepted 31 May 2012

Academic Editor: Cinta Porte

Copyright © 2012 Andrew D. Johnston and Paul R. Ebert. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Miwa, J. St-Pierre, L. Partridge, and M. D. Brand, “Superoxide and hydrogen peroxide production by Drosophila mitochondria,” Free Radical Biology and Medicine, vol. 35, no. 8, pp. 938–948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. McCord and I. Fridovich, “Superoxide dismutase,” The Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  3. J. F. Mead, “Free radical mechanisms of lipid damage and consequences for cellular membranes,” Free Radicals in Biology, vol. 1, pp. 51–68, 1976. View at Google Scholar
  4. N. Brot, L. Weissbach, J. Werth, and H. Weissbach, “Enzymatic reduction of protein-bound methionine sulfoxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 4, pp. 2155–2158, 1981. View at Google Scholar · View at Scopus
  5. B. Demple and S. Linn, “5,6-saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide,” Nucleic Acids Research, vol. 10, no. 12, pp. 3781–3789, 1982. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Cathcart, E. Schwiers, R. L. Saul, and B. N. Ames, “Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 18 I, pp. 5633–5637, 1984. View at Google Scholar · View at Scopus
  7. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  8. B. D'Autréaux and M. B. Toledano, “ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 813–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. W. Linnane, M. Kios, and L. Vitetta, “Coenzyme Q10-Its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome,” Mitochondrion, vol. 7, pp. S51–S61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Nohl, A. V. Kozlov, K. Staniek, and L. Gille, “The multiple functions of coenzyme Q,” Bioorganic Chemistry, vol. 29, no. 1, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Nohl, L. Gille, and K. Staniek, “Intracellular generation of reactive oxygen species by mitochondria,” Biochemical Pharmacology, vol. 69, no. 5, pp. 719–723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. St-Pierre, J. A. Buckingham, S. J. Roebuck, and M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain,” The Journal of Biological Chemistry, vol. 277, no. 47, pp. 44784–44790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Klatt and S. Lamas, “Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress,” European Journal of Biochemistry, vol. 267, no. 16, pp. 4928–4944, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Fratelli, H. Demol, M. Puype et al., “Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3505–3510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Hisabori, S. Hara, T. Fujii, D. Yamazaki, N. Hosoya-Matsuda, and K. Motohashi, “Thioredoxin affinity chromatography: a useful method for further understanding the thioredoxin network,” Journal of Experimental Botany, vol. 56, no. 416, pp. 1463–1468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Martínez-Ruiz and S. Lamas, “Proteomic identification of 5-nitrosylated proteins in endothelial cells,” Methods in Molecular Biology, vol. 357, pp. 215–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Martínez-Ruiz and S. Lamas, “Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences,” Cardiovascular Research, vol. 75, no. 2, pp. 220–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. E. R. Stadtman, J. Moskovitz, and R. L. Levine, “Oxidation of methionine residues of proteins: biological consequences,” Antioxidants and Redox Signaling, vol. 5, no. 5, pp. 577–582, 2003. View at Google Scholar · View at Scopus
  20. H. J. Forman, J. M. Fukuto, and M. Torres, “Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers,” American Journal of Physiology, vol. 287, no. 2, pp. C246–C256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, and J. S. Stamler, “Protein S-nitrosylation: purview and parameters,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 150–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Shechter, Y. Burstein, and A. Patchornik, “Selective oxidation of methionine residues in proteins,” Biochemistry, vol. 14, no. 20, pp. 4497–4503, 1975. View at Google Scholar · View at Scopus
  23. E. A. Veal, A. M. Day, and B. A. Morgan, “Hydrogen peroxide sensing and signaling,” Molecular Cell, vol. 26, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Miki and Y. Funato, “Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species,” Journal of Biochemistry, vol. 151, pp. 255–261, 2012. View at Google Scholar
  25. J. D. Lambeth, “NOX enzymes and the biology of reactive oxygen,” Nature Reviews Immunology, vol. 4, no. 3, pp. 181–189, 2004. View at Google Scholar · View at Scopus
  26. A. W. Linnane, M. Kios, and L. Vitetta, “Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide,” Biogerontology, vol. 8, no. 5, pp. 445–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Hansen, W. H. Watson, and D. P. Jones, “Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1,” Toxicological Sciences, vol. 82, no. 1, pp. 308–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. M. Go and D. P. Jones, “Redox compartmentalization in eukaryotic cells,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1273–1290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. P. Jones and Y. M. Go, “Redox compartmentalization and cellular stress,” Diabetes, Obesity and Metabolism, vol. 12, no. 2, pp. 116–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. R. Taylor, F. Hurrell, R. J. Shannon, T. K. Lin, J. Hirst, and M. P. Murphy, “Reversible glutathionylation of complex I increases mitochondrial superoxide formation,” The Journal of Biological Chemistry, vol. 278, no. 22, pp. 19603–19610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. E. W. Trotter and C. M. Grant, “Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems,” EMBO Reports, vol. 4, no. 2, pp. 184–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. P. Jones, Y. M. Go, C. L. Anderson, T. R. Ziegler, J. M. Kinkade, and W. G. Kirlin, “Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control,” The FASEB Journal, vol. 18, no. 11, pp. 1246–1248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Hansen, H. Zhang, and D. P. Jones, “Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions,” Free Radical Biology and Medicine, vol. 40, no. 1, pp. 138–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kemp, Y. M. Go, and D. P. Jones, “Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 921–937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Dwivedi and M. L. Kemp, “Systemic redox regulation of cellular information processing,” Antioxidants and Redox Signaling, vol. 16, no. 4, pp. 374–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. G. Rhee, Y. S. Bae, S. R. Lee, and J. Kwon, “Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation,” Science's STKE, vol. 2000, no. 53, p. PE1, 2000. View at Google Scholar · View at Scopus
  37. T. C. Meng, T. Fukada, and N. K. Tonks, “Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo,” Molecular Cell, vol. 9, no. 2, pp. 387–399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Mahadev, A. Zilbering, L. Zhu, and B. J. Goldstein, “Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1B in v ivo and enhances the early insulin action cascade,” The Journal of Biological Chemistry, vol. 276, no. 24, pp. 21938–21942, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Kamata, S. I. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin, “Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases,” Cell, vol. 120, no. 5, pp. 649–661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. N. R. Leslie, D. Bennett, Y. E. Lindsay, H. Stewart, A. Gray, and C. P. Downes, “Redox regulation of PI 3-kinase signalling via inactivation of PTEN,” The EMBO Journal, vol. 22, no. 20, pp. 5501–5510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. T. C. Laurent, E. C. Moore, and P. Reichard, “Enzymatic synthesis of deoxyribonucleotides,” The Journal of Biological Chemistry, vol. 239, pp. 3436–3444, 1964. View at Google Scholar · View at Scopus
  42. E. C. Moore, P. Reichard, and L. Thelander, “Enzymatic synthesis of deoxyribonucleotides V. Purification and properties of thioredoxin reductase from Escherichia coli B,” The Journal of Biological Chemistry, vol. 239, pp. 3445–3452, 1964. View at Google Scholar · View at Scopus
  43. J. L. Pan and J. C. A. Bardwell, “The origami of thioredoxin-like folds,” Protein Science, vol. 15, no. 10, pp. 2217–2227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. H. Lillig and A. Holmgren, “Thioredoxin and related molecules—from biology to health and disease,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 25–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Nakamura, K. Nakamura, and J. Yodoi, “Redox regulation of cellular activation,” Annual Review of Immunology, vol. 15, pp. 351–369, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Pekkari and A. Holmgren, “Truncated thioredoxin: physiological functions and mechanism,” Antioxidants and Redox Signaling, vol. 6, no. 1, pp. 53–61, 2004. View at Google Scholar · View at Scopus
  47. G. Powis and W. R. Montfort, “Properties and biological activities of thioredoxins,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 261–295, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Abate, L. Patel, F. J. Rauscher, and T. Curran, “Redox regulation of Fos and Jun DNA-binding activity in vitro,” Science, vol. 249, no. 4973, pp. 1157–1161, 1990. View at Google Scholar · View at Scopus
  49. T. Okamoto, H. Ogiwara, T. Hayashi, A. Mitsui, T. Kawabe, and J. Yodoi, “Human thioredoxin/adult T cell leukemia-derived factor activates the enhancer binding protein of human immunodeficiency virus type 1 by thiol redox control mechanism,” International Immunology, vol. 4, no. 7, pp. 811–819, 1992. View at Google Scholar · View at Scopus
  50. T. Hayashi, Y. Ueno, and T. Okamoto, “Oxidoreductive regulation of nuclear factor κ B. Involvement of a cellular reducing catalyst thioredoxin,” The Journal of Biological Chemistry, vol. 268, no. 15, pp. 11380–11388, 1993. View at Google Scholar · View at Scopus
  51. S. H. Kim, J. Oh, J. Y. Choi, J. Y. Jang, M. W. Kang, and C. E. Lee, “Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production,” BMC Immunology, vol. 9, article no. 64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Miranda-Vizuete, J. C. F. González, G. Gahmon, J. Burghoorn, P. Navas, and P. Swoboda, “Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons,” FEBS Letters, vol. 580, no. 2, pp. 484–490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. C. Fierro-González, M. González-Barrios, A. Miranda-Vizuete, and P. Swoboda, “The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans,” Biochemical and Biophysical Research Communications, vol. 406, no. 3, pp. 478–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. P. I. K. Lim, J. Liu, M. I. Go, and U. A. Boelsterli, “The mitochondrial superoxide/thioredoxin-2/ask1 signaling pathway is critically involved in troglitazone-induced cell injury to human hepatocytes,” Toxicological Sciences, vol. 101, no. 2, pp. 341–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Schlotterer, A. Hamann, G. Kukudov et al., “Apurinic/apyrimidinic endonuclease 1, p53, and thioredoxin are linked in control of aging in C. elegans,” Aging Cell, vol. 9, no. 3, pp. 420–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. C. Fierro-González, A. Cornils, J. Alcedo, A. Miranda-Vizuete, and P. Swoboda, “The thioredoxin TRX-1 modulates the function of the insulin-like neuropeptide DAF-28 during dauer formation in Caenorhabditis elegans,” PLoS ONE, vol. 6, no. 1, Article ID e16561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Funato and H. Miki, “Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation,” Antioxidants and Redox Signaling, vol. 9, no. 8, pp. 1035–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Hirota, M. Matsui, M. Murata et al., “Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-κB, AP-1, and CREB activation in HEK293 cells,” Biochemical and Biophysical Research Communications, vol. 274, no. 1, pp. 177–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Hayashi, Y. Funato, T. Terabayashi et al., “Nucleoredoxin negatively regulates toll-like receptor 4 signaling via recruitment of flightless-I to myeloid differentiation primary response gene (88),” The Journal of Biological Chemistry, vol. 285, no. 24, pp. 18586–18593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Funato, T. Terabayashi, R. Sakamoto et al., “Nucleoredoxin sustains Wnt/β-catenin signaling by retaining a pool of inactive dishevelled protein,” Current Biology, vol. 20, no. 21, pp. 1945–1952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Kunchithapautham, B. Padmavathi, R. B. Narayanan, P. Kaliraj, and A. L. Scott, “Thioredoxin from Brugia malayi: defining a 16-kilodalton class of thioredoxins from nematodes,” Infection and Immunity, vol. 71, no. 7, pp. 4119–4126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Hatahet and L. W. Ruddock, “Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation,” Antioxidants and Redox Signaling, vol. 11, no. 11, pp. 2807–2850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Pompella, A. Visvikis, A. Paolicchi, V. De Tata, and A. F. Casini, “The changing faces of glutathione, a cellular protagonist,” Biochemical Pharmacology, vol. 66, no. 8, pp. 1499–1503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Sheehan, G. Meade, V. M. Foley, and C. A. Dowd, “Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily,” Biochemical Journal, vol. 360, no. 1, pp. 1–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. C. E. Paulsen and K. S. Carroll, “Orchestrating redox signaling networks through regulatory cysteine switches,” ACS Chemical Biology, vol. 5, no. 1, pp. 47–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. L. Hearne and R. F. Colman, “Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1,” Protein Science, vol. 14, no. 10, pp. 2526–2536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Chaudhari, M. W. Anderson, and T. E. Eling, “Conjugation of 15-keto-prostaglandins by glutathione S-transferases,” Biochimica et Biophysica Acta, vol. 531, no. 1, pp. 56–64, 1978. View at Google Scholar · View at Scopus
  69. E. Christ-Hazelhof, D. H. Nugteren, and D. A. Van Dorp, “Conversions of prostaglandin endoperoxides by glutathione S transferases and serum albumins,” Biochimica et Biophysica Acta, vol. 450, no. 3, pp. 450–461, 1976. View at Google Scholar · View at Scopus
  70. C. Hwang, A. J. Sinskey, and H. F. Lodish, “Oxidized redox state of glutathione in the endoplasmic reticulum,” Science, vol. 257, no. 5076, pp. 1496–1502, 1992. View at Google Scholar · View at Scopus
  71. M. Baryshev, E. Sargsyan, and S. Mkrtchian, “ERp29 is an essential endoplasmic reticulum factor regulating secretion of thyroglobulin,” Biochemical and Biophysical Research Communications, vol. 340, no. 2, pp. 617–624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Sargsyan, M. Baryshev, L. Szekely, A. Sharipo, and S. Mkrtchian, “Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex,” The Journal of Biological Chemistry, vol. 277, no. 19, pp. 17009–17015, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. M. G. Desilva, J. Lu, G. Donadel et al., “Characterization and chromosomal localization of a new protein disulfide isomerase, PDIp, highly expressed in human pancreas,” DNA and Cell Biology, vol. 15, no. 1, pp. 9–16, 1996. View at Google Scholar · View at Scopus
  74. M. G. Desilva, “Molecular characterization of a pancreas-specific protein disulfide isomerase, PDIp,” DNA and Cell Biology, vol. 16, no. 3, pp. 269–274, 1997. View at Google Scholar · View at Scopus
  75. D. R. Peaper and P. Cresswell, “Regulation of MHC class I assembly and peptide binding,” Annual Review of Cell and Developmental Biology, vol. 24, pp. 343–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Mezghrani, A. Fassio, A. Benham, T. Simmen, I. Braakman, and R. Sitia, “Manipulation of oxidative protein folding and PDI redox state in mammalian cells,” The EMBO Journal, vol. 20, no. 22, pp. 6288–6296, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Zechmann, F. Mauch, L. Sticher, and M. Müller, “Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids,” Journal of Experimental Botany, vol. 59, no. 14, pp. 4017–4027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. C. H. Foyer and G. Noctor, “Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses,” The Plant Cell, vol. 17, no. 7, pp. 1866–1875, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Mou, W. Fan, and X. Dong, “Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes,” Cell, vol. 113, no. 7, pp. 935–944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. L. D. Gomez, G. Noctor, M. R. Knight, and C. H. Foyer, “Regulation of calcium signalling and gene expression by glutathione,” Journal of Experimental Botany, vol. 55, no. 404, pp. 1851–1859, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Mustacich and G. Powis, “Thioredoxin reductase,” Biochemical Journal, vol. 346, no. 1, pp. 1–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. S. M. Kanzok, A. Fechner, H. Bauer et al., “Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster,” Science, vol. 291, no. 5504, pp. 643–646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. J. R. Pedrajas, E. Kosmidou, A. Miranda-Vizuete, J. A. Gustafsson, A. P. H. Wright, and G. Spyrou, “Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 274, no. 10, pp. 6366–6373, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Stenvall, J. C. Fierro-González, P. Swoboda et al., “Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 3, pp. 1064–1069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. V. I. Bunik, “2-Oxo acid dehydrogenase complexes in redox regulation: role of the lipoate residues and thioredoxin,” European Journal of Biochemistry, vol. 270, no. 6, pp. 1036–1042, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Tretter and V. Adam-Vizi, “Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase,” Journal of Neuroscience, vol. 24, no. 36, pp. 7771–7778, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. A. A. Starkov, G. Fiskum, C. Chinopoulos et al., “Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species,” Journal of Neuroscience, vol. 24, no. 36, pp. 7779–7788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. A. J. Meyer, T. Brach, L. Marty et al., “Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer,” Plant Journal, vol. 52, no. 5, pp. 973–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. A. P. Fernandes and A. Holmgren, “Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system,” Antioxidants and Redox Signaling, vol. 6, no. 1, pp. 63–74, 2004. View at Google Scholar · View at Scopus
  90. P. Haunhorst, C. Berndt, S. Eitner, J. R. Godoy, and C. H. Lillig, “Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron-sulfur protein,” Biochemical and Biophysical Research Communications, vol. 394, no. 2, pp. 372–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. N. H. Cheng, “Picot, a novel monothiol glutaredoxin, plays a role in postembryonic growth and cardiac function in mice under nutritional perturbation,” Journal of Federation of American Societies for Experimental Biology, vol. 23, abstract 617.8, 2009. View at Google Scholar
  92. M. D. Shelton, P. B. Chock, and J. J. Mieyal, “Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation,” Antioxidants and Redox Signaling, vol. 7, no. 3-4, pp. 348–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. M. C. Sykes, A. L. Mowbray, and H. Jo, “Reversible glutathiolation of caspase-3 by glutaredoxin as a novel redox signaling mechanism in tumor necrosis factor-α-induced cell death,” Circulation Research, vol. 100, no. 2, pp. 152–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Adachi, D. R. Pimentel, T. Heibeck et al., “S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells,” The Journal of Biological Chemistry, vol. 279, no. 28, pp. 29857–29862, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. K. L. Morgan, A. O. Estevez, C. L. Mueller et al., “The glutaredoxin GLRX-21 functions to prevent selenium-induced oxidative stress in Caenorhabditis elegans,” Toxicological Sciences, vol. 118, no. 2, Article ID kfq273, pp. 530–543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Wilkinson and H. F. Gilbert, “Protein disulfide isomerase,” Biochimica et Biophysica Acta, vol. 1699, no. 1-2, pp. 35–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Bass, L. W. Ruddock, P. Klappa, and R. B. Freedman, “A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein,” The Journal of Biological Chemistry, vol. 279, no. 7, pp. 5257–5262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. A. R. Karala, P. Psarrakos, L. W. Ruddock, and P. Klappa, “Protein disulfide isomerases from C. elegans are equally efficient at thiol-disulfide exchange in simple peptide-based systems but show differences in reactivity towards protein substrates,” Antioxidants and Redox Signaling, vol. 9, no. 11, pp. 1815–1823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. A. D. Winter, G. McCormack, and A. P. Page, “Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans,” Developmental Biology, vol. 308, no. 2, pp. 449–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. H. I. Alanen, K. E. H. Salo, A. Pirneskoski, and L. W. Ruddock, “pH dependence of the peptide thiol-disulfide oxidase activity of six members of the human protein bisulfide isomerase family,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 283–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. A. D. Winter and A. P. Page, “Prolyl 4-hydroxylase is an essential procollagen-modifying enzyme required for exoskeleton formation and the maintenance of body shape in the nematode Caenorhabditis elegans,” Molecular and Cellular Biology, vol. 20, no. 11, pp. 4084–4093, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Keskiaho, L. Kukkola, A. P. Page et al., “Characterization of a novel Caenorhabditis elegans prolyl 4-hydroxylase with a unique substrate specificity and restricted expression in the pharynx and excretory duct,” The Journal of Biological Chemistry, vol. 283, no. 16, pp. 10679–10689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Veijola, P. Annunen, P. Koivunen, A. P. Page, T. Pihlajaniemi, and K. I. Kivirikko, “Baculovirus expression of two protein disulphide isomerase isoforms from Caenorhabditis elegans and characterization of prolyl 4-hydroxylases containing one of these polypeptides as their β subunit,” Biochemical Journal, vol. 317, no. 3, pp. 721–729, 1996. View at Google Scholar · View at Scopus
  104. F. C. F. Ko and K. L. Chow, “A novel thioredoxin-like protein encoded by the C. elegans dpy-11 gene is required for body and sensory organ morphogenesis,” Development, vol. 129, no. 5, pp. 1185–1194, 2002. View at Google Scholar · View at Scopus
  105. T. Higuchi, Y. Watanabe, and I. Waga, “Protein disulfide isomerase suppresses the transcriptional activity of NF-κB,” Biochemical and Biophysical Research Communications, vol. 318, no. 1, pp. 46–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. B. M. Babior, J. D. Lambeth, and W. Nauseef, “The neutrophil NADPH oxidase,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 342–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. J. C. Moreno, H. Bikker, M. J. E. Kempers et al., “Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism,” The New England Journal of Medicine, vol. 347, no. 2, pp. 95–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. W. A. Edens, L. Sharling, G. Cheng et al., “Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox,” Journal of Cell Biology, vol. 154, no. 4, pp. 879–891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. J. L. Meitzler, R. Brandman, and P. R. Ortiz De Montellano, “Perturbed heme binding is responsible for the blistering phenotype associated with mutations in the Caenorhabditis elegans dual oxidase 1 (DUOX1) peroxidase domain,” The Journal of Biological Chemistry, vol. 285, no. 52, pp. 40991–41000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. G. R. Buettner, C. F. Ng, M. Wang, V. G. J. Rodgers, and F. Q. Schafer, “A New paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state,” Free Radical Biology and Medicine, vol. 41, no. 8, pp. 1338–1350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. V. D. Longo, E. B. Gralla, and J. S. Valentine, “Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae: mitochondrial production of toxic oxygen species in vivo,” The Journal of Biological Chemistry, vol. 271, no. 21, pp. 12275–12280, 1996. View at Publisher · View at Google Scholar · View at Scopus
  112. V. D. Longo, L. L. Liou, J. S. Valentine, and E. B. Gralla, “Mitochondrial superoxide decreases yeast survival in stationary phase,” Archives of Biochemistry and Biophysics, vol. 365, no. 1, pp. 131–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Wawryn, A. Krzepiłko, A. Myszka, and T. Biliński, “Deficiency in superoxide dismutases shortens life span of yeast cells,” Acta Biochimica Polonica, vol. 46, no. 2, pp. 249–253, 1999. View at Google Scholar · View at Scopus
  114. E. S. Unlu and A. Koc, “Effects of deleting mitochondrial antioxidant genes on life span,” Annals of the New York Academy of Sciences, vol. 1100, pp. 505–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. J. P. Phillips, S. D. Campbell, D. Michaud, M. Charbonneau, and A. J. Hilliker, “Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 8, pp. 2761–2765, 1989. View at Google Scholar · View at Scopus
  116. S. Elchuri, T. D. Oberley, W. Qi et al., “CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life,” Oncogene, vol. 24, no. 3, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Doonan, J. J. McElwee, F. Matthijssens et al., “Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans,” Genes and Development, vol. 22, no. 23, pp. 3236–3241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. N. O. L. Seto, S. Hayashi, and G. M. Tener, “Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 11, pp. 4270–4274, 1990. View at Publisher · View at Google Scholar · View at Scopus
  119. B. E. Staveley, J. P. Phillips, and A. J. Hilliker, “Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster,” Genome, vol. 33, no. 6, pp. 867–872, 1990. View at Google Scholar · View at Scopus
  120. J. M. Van Raamsdonk and S. Hekimi, “Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans,” PLoS Genetics, vol. 5, no. 2, Article ID e1000361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Honda and S. Honda, “The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans,” The FASEB Journal, vol. 13, no. 11, pp. 1385–1393, 1999. View at Google Scholar · View at Scopus
  122. S. I. Liochev and I. Fridovich, “Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase,” Free Radical Biology and Medicine, vol. 48, no. 12, pp. 1565–1569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. A. K. Holley, V. Bakthavatchalu, J. M. Velez-Roman, and D. K. St Clair, “Manganese superoxide dismutase: guardian of the powerhouse,” International Journal of Molecular Sciences, vol. 12, pp. 7114–7162, 2011. View at Google Scholar
  124. M. Fujii, N. Ishii, A. Joguchi, K. Yasuda, and D. Ayusawa, “A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans,” DNA Research, vol. 5, no. 1, pp. 25–30, 1998. View at Google Scholar · View at Scopus
  125. E. Lubos, J. Loscalzo, and D. E. Handy, “Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 15, no. 7, pp. 1957–1997, 2011. View at Google Scholar
  126. J. R. Vanfleteren, “Oxidative stress and ageing in Caenorhabditis elegans,” Biochemical Journal, vol. 292, no. 2, pp. 605–608, 1993. View at Google Scholar · View at Scopus
  127. M. Maiorino, F. Ursini, V. Bosello et al., “The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases,” Journal of Molecular Biology, vol. 365, no. 4, pp. 1033–1046, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. Z. Faltin, D. Holland, M. Velcheva et al., “Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation,” Plant and Cell Physiology, vol. 51, no. 7, pp. 1151–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Lubos, C. E. Mahoney, J. A. Leopold, Y. Y. Zhang, J. Loscalzo, and D. E. Handy, “Glutathione peroxidase-1 modulates lipopolysaccharide-induced adhesion molecule expression in endothelial cells by altering CD14 expression,” The FASEB Journal, vol. 24, no. 7, pp. 2525–2532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. E. Lubos, N. J. Kelly, S. R. Oldebeken et al., “Glutathione peroxidase-1 deficiency augments proinflammatory cytokine-induced redox signaling and human endothelial cell activation,” The Journal of Biological Chemistry, vol. 286, pp. 35407–35417, 2011. View at Google Scholar
  131. A. B. Carter, L. A. Tephly, S. Venkataraman et al., “High levels of catalase and glutathione peroxidase activity dampen H2O2 signaling in human alveolar macrophages,” American Journal of Respiratory Cell and Molecular Biology, vol. 31, no. 1, pp. 43–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Benner, H. Daniel, and B. Spanier, “A glutathione peroxidase, intracellular peptidases and the TOR complexes regulate peptide transporter PEPT-1 in C. elegans,” PloS one, vol. 6, Article ID e25624, 2011. View at Google Scholar
  133. G. R. Sue, Z. C. Ho, and K. Kim, “Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling,” Free Radical Biology and Medicine, vol. 38, no. 12, pp. 1543–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Palande, O. Roovers, J. Gits et al., “Peroxiredoxin-controlled G-CSF signalling at the endoplasmic reticulum-early endosome interface,” Journal of Cell Science, vol. 124, pp. 3695–3705, 2011. View at Google Scholar
  135. K. Isermann, E. Liebau, T. Roeder, and I. Bruchhaus, “A peroxiredoxin specifically expressed in two types of pharyngeal neurons is required for normal growth and egg production in Caenorhabditis elegans,” Journal of Molecular Biology, vol. 338, no. 4, pp. 745–755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Oláhová, S. R. Taylor, S. Khazaipoul et al., “A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19839–19844, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Taub, J. F. Lau, C. Ma et al., “A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants,” Nature, vol. 399, no. 6732, pp. 162–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  138. S. H. Togo, M. Maebuchi, S. Yokota, M. Bun-ya, A. Kawahara, and T. Kamiryo, “Immunological detection of alkaline-diaminobenzidine-negative peroxisomes of the nematode Caenorhabditis elegans: purification and unique pH optima of peroxisomal catalase,” European Journal of Biochemistry, vol. 267, no. 5, pp. 1307–1312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. O. I. Petriv and R. A. Rachubinski, “Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans,” The Journal of Biological Chemistry, vol. 279, no. 19, pp. 19996–20001, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. C. T. Murphy, S. A. McCarroll, C. I. Bargmann et al., “Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans,” Nature, vol. 424, no. 6946, pp. 277–284, 2003. View at Publisher · View at Google Scholar · View at Scopus