Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012, Article ID 648384, 8 pages
http://dx.doi.org/10.1155/2012/648384
Clinical Study

Application of Purified Botulinum Type A Neurotoxin to Treat Experimental Trigeminal Neuropathy in Rats and Patients with Urinary Incontinence and Prostatic Hyperplasia

1Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
2Department of Urology, Kawasaki Medical School, Kurashiki 701-0192, Japan
3Department of Medical Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
4Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
5Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan

Received 25 July 2011; Revised 15 February 2012; Accepted 10 April 2012

Academic Editor: S. Ashraf Ahmed

Copyright © 2012 Yoshizo Matsuka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Sakaguchi, S. Kozaki, and I. Ohishi, “Structure and function of botulinum toxins,” in Bacterial Protein Toxins, J. E. Alouf, F. J. Fehrenbach, J. H. Freer, and J. Jeljaszewicz, Eds., pp. 435–443, Academic Press, London, UK, 1984. View at Google Scholar
  2. K. Oguma, K. Inoue, Y. Fujinaga et al., “Structure and function of Clostridium botulinum progenitor toxin,” Journal of Toxicology, vol. 18, no. 1, pp. 17–34, 1999. View at Google Scholar · View at Scopus
  3. K. Inoue, Y. Fujinaga, T. Watanabe et al., “Molecular composition of Clostridium botulinum type A progenitor toxins,” Infection and Immunity, vol. 64, no. 5, pp. 1589–1594, 1996. View at Google Scholar · View at Scopus
  4. K. Inoue, Y. Fujinaga, K. Honke et al., “Clostridium botulinum type A haemagglutinin-positive progenitor toxin (HA+-PTX) binds to oligosaccharides containing Galβ1-4GIcNAc through one subcomponent of haemagglutinin (HA1),” Microbiology, vol. 147, no. 4, pp. 811–819, 2001. View at Google Scholar · View at Scopus
  5. K. Inoue, M. Sobhany, T. R. Transue, K. Oguma, L. C. Pedersen, and M. Negishi, “Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin for Clostridium botulinum,” Microbiology, vol. 149, no. 12, pp. 3361–3370, 2003. View at Google Scholar · View at Scopus
  6. T. Nakamura, T. Tonozuka, A. Ide, T. Yuzawa, K. Oguma, and A. Nishikawa, “Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin,” Journal of Molecular Biology, vol. 376, no. 3, pp. 854–867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Nakamura, M. Kotani, T. Tonozuka, A. Ide, K. Oguma, and A. Nishikawa, “Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin,” Journal of Molecular Biology, vol. 385, no. 4, pp. 1193–1206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Hasegawa, T. Watanabe, T. Suzuki et al., “A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms,” The Journal of Biological Chemistry, vol. 282, no. 34, pp. 24777–24783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. B. Scott, “Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery,” Ophthalmology, vol. 87, no. 10, pp. 1044–1049, 1980. View at Google Scholar · View at Scopus
  10. J. Jankovic and M. F. Brin, “Therapeutic uses of botulinum toxin,” The New England Journal of Medicine, vol. 324, no. 17, pp. 1186–1194, 1991. View at Google Scholar · View at Scopus
  11. H. C. Kuo, “Prostate botulinum a toxin injection—an alternative treatment for benign prostatic obstruction in poor surgical candidates,” Urology, vol. 65, no. 4, pp. 670–674, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. C. Chuang, P. H. Chiang, N. Yoshimura, F. De Miguel, and M. B. Chancellor, “Sustained beneficial effects of intraprostatic botulinum toxin type A on lower urinary tract symptoms and quality of life in men with benign prostatic hyperplasia,” BJU International, vol. 98, no. 5, pp. 1033–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Silva, R. Pinto, T. Carvalho et al., “Intraprostatic Botulinum toxin type A injection in patients with benign prostatic enlargement: duration of the effect of a single treatment,” BMC Urology, vol. 9, no. 1, article 9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Schurch, M. Stöhrer, G. Kramer, D. M. Schmid, G. Gaul, and D. Hauri, “Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results,” The Journal of Urology, vol. 164, no. 3, pp. 692–697, 2000. View at Google Scholar · View at Scopus
  15. A. Sahai, M. S. Khan, and P. Dasgupta, “Efficacy of botulinum toxin-a for treating idiopathic detrusor overactivity: results from a single center, randomized, double-blind, placebo controlled trial,” The Journal of Urology, vol. 177, no. 6, pp. 2231–2236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Dmochowski, C. Chapple, V. W. Nitti et al., “Efficacy and safety of onabotulinumtoxina for idiopathic overactive bladder: a double-blind, placebo controlled, randomized, dose ranging trial,” The Journal of Urology, vol. 184, no. 6, pp. 2416–2422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Lee, K. Yokota, H. Arimitsu et al., “Production of anti-neurotoxin antibody is enhanced by two subcomponents, HA1 and HA3b, of Clostridium botulinum type B 16S toxin-haemagglutinin,” Microbiology, vol. 151, no. 11, pp. 3739–3747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Lee, T. Yokoyama, H. J. Hwang et al., “Clinical application of Clostridium botulinum type A neurotoxin purified by a simple procedure for patients with urinary incontinence caused by refractory destrusor overactivity,” FEMS Immunology and Medical Microbiology, vol. 51, no. 3, p. 587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Yahagi, M. Nagao, Y. Seino et al., “Mutagenicities of N nitrosamines on Salmonella,” Mutation Research, vol. 48, no. 2, pp. 121–129, 1977. View at Google Scholar · View at Scopus
  20. F. Cruz, S. Herschorn, P. Aliotta et al., “Efficacy and safety of onabotulinumtoxina in patients with urinary incontinence due to neurogenic detrusor overactivity: a randomised, double-blind, placebo-controlled trial,” European Urology, vol. 60, no. 4, pp. 742–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Maria, G. Brisinda, I. M. Civello, A. R. Bentivoglio, G. Sganga, and A. Albanese, “Relief by botulinum toxin of voiding dysfunction due to benign prostatic hyperplasia: results of a randomized, placebo-controlled study,” Urology, vol. 62, no. 2, pp. 259–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. H. Fromm, “Trigeminal neuralgia and related disorders,” Neurologic Clinics, vol. 7, no. 2, pp. 305–319, 1989. View at Google Scholar · View at Scopus
  23. The American Academy of Orofacial Pain, “Episodic and continuous neuropathic pain,” in Orofacial Pain Guidelines for Assessment, Diagnosis, and Management, R. de Leeuw, Ed., pp. 83–99, Quintessence, Chicago, Ill, USA, 4th edition, 2008. View at Google Scholar
  24. J. M. Zakrzewska and P. N. Patsalos, “Drugs used in the management of trigeminal neuralgia,” Oral Surgery Oral Medicine and Oral Pathology, vol. 74, no. 4, pp. 439–450, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. J. X. Li, W. L. Zhao, and J. H. Liang, “Effects of carbamazepine on morphine-induced behavioral sensitization in mice,” Brain Research, vol. 1019, no. 1-2, pp. 77–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Piovesan, H. G. Teive, P. A. Kowacs, M. V. Della Coletta, L. C. Werneck, and S. D. Silberstein, “An open study of botulinum-A toxin treatment of trigeminal neuralgia,” Neurology, vol. 65, no. 8, pp. 1306–1308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Bohluli, M. H. K. Motamedi, S. C. Bagheri et al., “Use of botulinum toxin A for drug-refractory trigeminal neuralgia: preliminary report,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 111, no. 1, pp. 47–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Bach-Rojecky, M. Relja, and Z. Lacković, “Botulinum toxin type A in experimental neuropathic pain,” Journal of Neural Transmission, vol. 112, no. 2, pp. 215–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. H. J. Park, Y. Lee, J. Lee, C. Park, and D. E. Moon, “The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain,” Canadian Journal of Anesthesia, vol. 53, no. 5, pp. 470–477, 2006. View at Google Scholar · View at Scopus
  30. S. Luvisetto, S. Marinelli, S. Cobianchi, and F. Pavone, “Anti-allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain,” Neuroscience, vol. 145, no. 1, pp. 1–4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Linde, K. Hagen, and L. J. Stovner, “Botulinum toxin treatment of secondary headaches and cranial neuralgias: a review of evidence,” Acta Neurologica Scandinavica, vol. 124, no. 191, pp. 50–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Kitamura, Y. Matsuka, I. Spigelman et al., “Botulinum toxin type a (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropathy behaviors induced by infraorbital nerve constriction,” Neuroscience, vol. 159, no. 4, pp. 1422–1429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Filipović, I. Matak, L. Bach-Rojecky et al., “Central action of peripherally applied botulinum toxin type a on pain and dural protein extravasation in rat model of trigeminal neuropathy,” PLoS ONE, vol. 7, no. 1, Article ID e29803, 2012. View at Google Scholar
  34. A. Kumada, Y. Matsuka, I. Spigelman et al., “Intradermal injection of Botulinum toxin type A alleviates infraorbital nerve constriction-induced thermal hyperalgesia in an operant assay,” Journal of Oral Rehabilitation, vol. 39, no. 1, pp. 63–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Antonucci, C. Rossi, L. Gianfranceschi, O. Rossetto, and M. Caleo, “Long-distance retrograde effects of botulinum neurotoxin A,” Journal of Neuroscience, vol. 28, no. 14, pp. 3689–3696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Matak, L. Bach-Rojecky, B. Filipović, and Z. Lacković, “Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A,” Neuroscience, vol. 186, pp. 201–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Arimitsu, K. Inoue, Y. Sakaguchi et al., “Purification of fully activated Clostridium botulinum serotype B toxin for treatment of patients with dystonia,” Infection and Immunity, vol. 71, no. 3, pp. 1599–1603, 2003. View at Publisher · View at Google Scholar · View at Scopus