Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2013, Article ID 329407, 7 pages
http://dx.doi.org/10.1155/2013/329407
Research Article

Clinical Validation of a Highly Sensitive GC-MS Platform for Routine Urine Drug Screening and Real-Time Reporting of up to 212 Drugs

1Department of Laboratory Medicine, University of Washington, P.O. Box 357110, 1959 NE Pacific Street, Seattle, WA 98185, USA
2Department of Medicine, University of Washington, Seattle, WA 98150, USA
3Department of Pathology, University of Washington, Seattle, WA 98150, USA

Received 15 March 2013; Accepted 18 June 2013

Academic Editor: Steven J. Bursian

Copyright © 2013 Hari Nair et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. T. Peters, “Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology,” Clinical Biochemistry, vol. 44, no. 1, pp. 54–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. H. Wu and D. French, “Implementation of liquid chromatography/mass spectrometry into the clinical laboratory,” Clinica Chimica Acta, vol. 420, pp. 4–10, 2013. View at Publisher · View at Google Scholar
  3. S. K. G. Grebe and R. J. Singh, “LC-MS/MS in the clinical laboratory—where to from here?” Clinical Biochemist Reviews, vol. 32, no. 1, pp. 5–31, 2011. View at Google Scholar · View at Scopus
  4. A. H. Wu, “Role of liquid chromatography-high-resolution mass spectrometry (LC-HR/MS) in clinical toxicology,” Clinical Toxicology, vol. 50, no. 8, pp. 733–742, 2012. View at Publisher · View at Google Scholar
  5. H. H. Maurer, “Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicology,” Analytical and Bioanalytical Chemistry, vol. 388, no. 7, pp. 1315–1325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. H. Maurer, “Hyphenated mass spectrometric techniques—indispensable tools in clinical and forensic toxicology and in doping control,” Journal of Mass Spectrometry, vol. 41, no. 11, pp. 1399–1413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. D. Krasowski, A. F. Pizon, M. G. Siam, S. Giannoutsos, M. Iyer, and S. Ekins, “Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine,” BMC Emergency Medicine, vol. 9, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. L. Schymanski, M. Meringer, and W. Brack, “Automated strategies to identify compounds on the basis of GC/EI-MS and calculated properties,” Analytical Chemistry, vol. 83, no. 3, pp. 903–912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. W. McLafferty and F. Turecek, Interpretation of Mass Spectra, USB, 4th edition, 1993.
  10. E. Matisová and M. Dömötörová, “Fast gas chromatography and its use in trace analysis,” Journal of Chromatography A, vol. 1000, no. 1-2, pp. 199–221, 2003. View at Publisher · View at Google Scholar
  11. S. E. Stein, “An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data,” Journal of the American Society for Mass Spectrometry, vol. 10, no. 8, pp. 770–781, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. http://chemdata.nist.gov/mass-spc/amdis/index.html.
  13. M. R. Meyer, F. T. Peters, and H. H. Maurer, “Automated mass spectral deconvolution and identification system for GC-MS screening for drugs, poisons, and metabolites in urine,” Clinical Chemistry, vol. 56, no. 4, pp. 575–584, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Behrends, G. D. Tredwell, and J. G. Bundy, “A software complement to AMDIS for processing GC-MS metabolomic data,” Analytical Biochemistry, vol. 415, no. 2, pp. 206–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Choea, S. H. WooDong, W. K. Park et al., “Development of a target component extraction method from GC-MS data with an in-house program for metabolite profiling,” Analytical Biochemistry, vol. 426, no. 2, pp. 94–102, 2012. View at Publisher · View at Google Scholar
  16. S. O. Callaghan, D. P. Souza, A. Isaac et al., “PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools,” BMC Bioinformatics, vol. 13, article 115, 2012. View at Publisher · View at Google Scholar